
Adaptive RACH Congestion Management to
Support M2M Communication in 4G LTE Networks

Mukesh Kumar Giluka, Aiswarya Prasannakumar, Nitish Rajoria and Bheemarjuna Reddy Tamma
Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad, India

Email: [cs11p1002, cs11m08, cs11m01 and tbr]@iith.ac.in

Abstract—Machine to machine communication (M2M) or ma-
chine type communication (MTC) facilitates communication of
two network enabled devices, without any human intervention,
to take some intelligent decision based on the interaction of
devices. Because of ubiquitous coverage and global connectivity,
cellular networks are playing a major role in the deployment
of M2M communications. Due to some unique characteristics of
M2M communication, supporting M2M applications in cellular
networks is very challenging. One of such challenge is congestion
in radio access network (RAN) during RACH procedure. This is
because of the fact that there are large numbers of M2M devices
which access the radio network at the same time. As a solution,
we propose an adaptive RACH congestion management function
(ARC) which specifies congestion handling method to be used by
all M2M devices based on the current congestion condition of
the network.

I. INTRODUCTION

Machine to machine (M2M) communication [1] is an
emerging communication concept where the goal of net-
working can be realized, fully or partially, with limited or
no human intervention. The main motivation behind M2M
communication is based on the observation [1] that after
enabling communication between multiple machines through
an underlying network, several applications were found which
does not need any human participation. Due to this character-
istic, M2M communication is becoming a market changing
force for a wide variety of applications. According to the
researchers [1] by the end of 2014, 1.5 billion devices and
by the end of 2020, 20 billion devices will be part of M2M
communication. According to 3GPP specifications [2] [3]
M2M communication can also be termed as Machine Type
Communication (MTC). In this paper, we have used the terms
MTC and M2M interchangeably. Some of the M2M applica-
tions are smart grid, e-healthcare, smart homes, environmental
monitoring, and industrial automation. These applications can
be broadly classified into six categories [4]: fleet management,
asset tracking, building security, modem, metering, telehealth.

Presently, cellular networks are optimized for Human-to-
Human (H2H) and Human-to-Machine (H2M) communica-
tions and in future also, these seem to be uninterrupted
because of the percentage of revenue contributed by these
applications to the operators. At the same time, characteristics
of H2H/H2M are different from that of M2M. In comparison
to H2H/H2M, M2M typically has low traffic volume, high
uplink to downlink traffic ratio, larger density of devices in a

particular geographical area, and limited mobility of devices.
With these differences, supporting M2M in current cellular
networks is a big challenge to the operators. Among several
challenges to be dealt with due to the incorporation of M2M
applications in cellular networks, RACH congestion handling
in radio access network (RAN) during RACH procedure is
one of the biggest challenges. RACH congestion occur when
large number of devices attempt for RACH procedure at a
time. In this paper, we propose an adaptive RACH congestion
management function (ARC) which based on the level of
RACH congestion in the network, adaptively chooses the
most efficient congestion handling method to overcome from
congestion.

Rest of this paper is organized as follows. In section II, ran-
dom access procedure (RACH procedure) in LTE systems is
discussed. In section III, various existing congestion handling
methods in RAN have been described. Section IV explains
proposed congestion handling method and ARC function.
Simulation results were analyzed in Section V and finally
Section VI concludes the paper.

II. RACH PROCEDURE

In 3GPP LTE system [5] when user equipment (UE) [6] or
MTC device is switched on, they will try to connect to base
station (also termed as eNodeB or eNB). Getting connected
to the eNB is a four step procedure called RACH (Random
Access Channel) procedure [7] [8]. RACH procedure is also
required for timing synchronization, handover, etc.
Step 1: This step is called random access request (RA Req).
Random access request happens in a special channel called
PRACH (physical random access channel). In this step, the
device sends a random access preamble to eNB in a PRACH
slot. SIB2 (system information block) is broadcasted by the
eNB which contains some essential information for devices in
a cell which can be used for downlink synchronization. This
also contains information about the location of PRACH slot in
a frame. Six radio resource blocks are reserved for preamble
transmission. Since these resource blocks are not scheduled
for a particular device, so, any number of devices can send
RA Req at the same time on these resource blocks. This can
lead to congestion.

Step 2: This step is called random access response (RAR).
RAR is sent by the eNB after receiving RA Req message. It
consists of the detected random access preamble, the timing

advance for the device, TC-RNTI which is the temporary
identifier for that device and uplink grant for the device to
send the subsequent messages.

Step 3: This step is called terminal identification step. In this
step, the device sends a message, as a reply of RAR message,
to eNB which consists of C-RNTI of the device if it was
previously connected to the eNB. If not, it will contain the
core network terminal identifier.

Step 4: This step is called contention resolution step. In
this step, the eNB will send contention resolution message to
devices in DL-SCH (downlink shared channel). Each device
receiving the response will check if it contains its identifier.
If a device gets a reply then it sends an acknowledgement,
otherwise it will backoff.

UE/MTC eNodeB

RA Req

Contention Resolution

Terminal Identification

RAR

Fig. 1: RACH Procedure

III. RELATED WORK

When a device wants to connect to RAN then it has to
perform RACH procedure. If a large number of devices try to
access the network at the same time then RACH congestion
can occur. This is because there are only 64 preambles in a
PRACH slot and if many devices try to access the network they
may end up choosing the same preamble as another device and
this will lead to collision which can result in failure of that
preamble attempt. Such devices will then backoff and try to
access the network at a later time. This leads to delays and
more congestion at a later stage. Several methods have been
proposed to solve the problem of RACH congestion in LTE
RAN. These methods can be classified as follows:

Push based method: In push based methods [9] [10], the
UE or MTC device will initiate the RACH procedure. One
of the approaches under this method is p-persistent approach.
In this approach, the UE will not send the random access
preamble request message immediately but it will send with
probability p. By doing this, congestion can be avoided up to
some extent. The problem with this method is that even when
congestion is not there, M2M device will send preamble with
probability p. This will cause unnecessary delay in case of
low congestion. Another approach is called Backoff Indicator
Adjustment approach in which the backoff time for MTC
devices is kept quite long so that more UE/MTC devices can be

served before a particular device start resending the preamble
request. This can also cause delay for sending M2M device’s
data.

Access barring method: In these methods [9], some devices
are barred from accessing the network if there is possibility
of congestion in both RAN and core network. In access class
barring (ACB) approach, MTC devices are classified into
different access classes. Single or multiple access classes are
barred in case of a possibility of congestion. In extended access
barring (EAB) approach, a device is given a status called EAB
if it can tolerate some delay in accessing the network. In case
of congestion, network can restrict devices having EAB status
from accessing the network.

Pull based method: In pull based methods [9] [10], eNB
will initiate the RACH procedure. Contention free approach
is one of the pull based methods which is generally used at
the time of handover. In this approach, the eNB will assign
a contention free preamble to UE. UE will send the RA Req
with this congestion free preamble. These methods can only
be used in special cases like handover and not during normal
RACH procedure.

Dynamic PRACH slot allocation method: In this method,
UE and MTC devices are not allowed to access the PRACH
slot at the same time. In separated PRACH slot allocation ap-
proach, PRACH resources are allocated either to UEs or MTC
devices. In self-adaptive congestion approach [11], the concept
of MTC PRACH is defined. MTC devices can send preamble
request only in MTC PRACH. This approach proposes that
if a device does successful RACH procedure then probability
of success in next RACH procedure will be increased if the
previous preamble is used again. If many of UE and MTC
devices coming is bursty, this method can cause delay even
when load on the network is low.

IV. PROPOSED WORK

Various methods were discussed to handle the RACH con-
gestion in previous section. Some methods avoid congestion
up to some extent but as soon as number of devices accessing
the network increases, their performances degrade. In this
paper, we have divided the RACH congestion level into three
categories: (i) No congestion scenario or scenario 1, when
there is very less congestion or no congestion. (ii) Moderate
congestion scenario or scenario 2, when there is a good amount
of congestion (iii) Access barring or extreme congestion
scenario or scenario 3, when network is unable to handle the
congestion and we need to bar devices from accessing the
network. In this paper, we have used the term no congestion
scenario and scenario 1 interchangeably.

We propose a new randomized access dispersion based
congestion handling method which is more suitable than
existing congestion handling methods for scenarios 1 and 2. In
the proposed method, Numbering Scheme (NS), when a M2M
device does successful RACH procedure, the eNB assigns a
number between 0 to n. If a device is assigned a number k
then on its next network access, it will send the RA Req on
kth PRACH slot from the time of activation of the device.

In general in M2M communications, devices do not access
the network continuously like in the case of periodic weather
monitoring and reporting to the remote server. So each time
when M2M devices access the network, RACH procedure is
needed for uplink synchronization of them with eNB. If the
device fails in kth PRACH slot, then it will backoff and will
send the RA Req on 2kth PRACH slot. If the device fails even
after, then it will no longer wait for the next kth PRACH slot.
It will follow the normal backoff scheme. Here, the value of
n is chosen by eNB in such a way that simultaneous access
of a number of devices is spreaded across some PRACH slots
to reduce contention. At the same time average access delay
should also be controlled.

To find out the suitability of different RACH congestion
handling methods for no congestion scenario or moderate
congestion scenario over other methods, we propose best
congestion handling method selection algorithm (BCHMS).
In this algorithm, performance of different RACH congestion
handling methods is estimated for a particular condition of
congestion in the network and best suitable method is chosen.
The method which sustains the network for longer amount
of time even if congestion increases, is most suitable for that
level of congestion in the network.

After successful preamble transmission, each device informs
eNB through terminal identification step that how many times
it backed off before getting success. Based on this information,
in BCHMS algorithm, the eNB calculates the average backoff
(say b) per device at a particular time instant. If value of b is
greater than a threshold value (λ), then there is a possibility
of moderate or low congestion depending upon the value of
λ. We denote λ as λ1 for the threshold of low congestion or
no congestion scenario and as λ2 for threshold of moderate
congestion scenario. So when b is greater than λ, one of
the congestion handling methods is applied. After applying
the method, average success rate will increase and b will
decrease. But, as the number of devices accessing the network
increases, average success rate decreases and b increases. Here,
we measure the time t1 elapsed to reach the success rate again
same as before applying the method. Similarly, we measure
the time (t2) taken to reach the average backoff equal to λ.
For example, let 1000 users or devices per second accessing
the network and let presently success rate is 500 devices per
second and average backoff per device is 50. Now, if one of
the congestion handling methods is implemented, then surely
success rate will increase and average backoff per device will
decrease. Let the new success rate is 700 devices per second
and average backoff is 30. But as number of devices accessing
the network increases, success rate will start decreasing and
average backoff will start increasing. The time elapsed to come
down the success rate from 700 to 500 devices per second is
termed as t1 and the time elapsed to reach the average backoff
from 30 to 50 is termed as t2. After getting t1 and t2, we
calculate k from following equation:

k = t1 + αt2

Here α is a constant whose value lies between 0 and 1. We

have taken α as 0.7. Here, we run the algorithm for different
congestion handling methods. k value gives the suitability of
that congestion handling method. The method with maximum
k value is the most suitable congestion handling method for
that particular network condition.

Algorithm 1 BCHMS Algorithm

Input: Congestion handling methods, Start time, λ
Output: t1, t2

1: N = 1000 {Number of devices present in the cell}
2: if current time < start time then
3: wait
4: else
5: find b {Average backoff calculated by eNB after receiv-

ing terminal identification message (MSG3) by all the
devices}

6: if b > λ then
7: find S1 {Average success rate before applying the

algorithm}
8: Apply the algorithm
9: find S2 and b2 after next PRACH slot. {S2 is average

success rate after applying the algorithm and b2 is
average backoff calculated by eNB after receiving
MSG3 by all the devices}

10: start timer t1 and t2
11: if S1 ≥ S2 or b2 > λ then
12: Return t1 = −1 and t2 = −1
13: else
14: N = N + 1000
15: find S2 and b2 after next PRACH slot.
16: if S1 ≥ S2 and timer t1 is not stopped then
17: stop the timer t1
18: end if
19: if b2 ≥ λ and timer t2 is not stopped then
20: stop the timer t2
21: end if
22: if both timer stopped then
23: return t1 and t2
24: else
25: go to step 14
26: end if
27: end if
28: else
29: N = N + 1000
30: go to step 5
31: end if
32: end if

The ultimate goal of this paper is to propose a func-
tion, adaptive RACH congestion management function (ARC),
which adaptively chooses most efficient congestion handling
method, given by the BCHMS algorithm, for a particular
level of congestion in the RAN. The function uses congestion
estimation subroutine to decide that RAN is under which

congestion scenario. Before calling congestion estimation sub-
routine, the function calculates number of devices falling under
scenario 1, scenario 2 and scenario 3. Number of devices
falling under scenario 1, scenario 2 and scenario 3 are denoted
by devScen1, devScen2 and devScen3, respectively. λ1 and
λ2 are thresholds of scenario 1 or no congestion scenario
and scenario 2 or moderate congestion scenario, respectively.
So, if the number of times backoff done by a device before
successful preamble transmission is less than λ1 then the
device falls under scenario 1 but if it is greater than λ1 and
less than λ2 then the device falls under scenario 2 otherwise
it falls under scenario 3. Now the function calls congestion
estimation subroutine and passes these values as parameters. It
also passes prevScen and tolerance factor as parameters.
The parameter prevScen denotes the scenario under which
RAN is falling at the time of calling of the subroutine by
the function. The subroutine finds that which variable among
devScen1, devScen2 and devScen3 is tolerance factor%
greater than other two. If that variable is devScen1 then
the subroutine returns scenario 1 or no congestion scenario
and if it is devScen2 then subroutine returns scenario 2 or
moderate congestion scenario otherwise scenario 3 or extreme
congestion scenario.

Algorithm 2 ARC Function

Input: tolerance factor
1: start timer
2: devScen1 = 0, devScen2 = 0,devScen3 = 0; {number

of devices existing in No Congestion Scenario,2 and 3}
3: prevScen = NONE;
4: if new device successfully connects to eNB then
5: if newdevice.backoff ≤ λ1 then
6: devScen1 = devScen1 + 1;
7: end if
8: if λ1 < newdevice.backoff ≤ λ2 then
9: devScen2 = devScen2 + 1;

10: end if
11: if newdevice.backoff > λ2 then
12: devScen3 = devScen3 + 1;
13: end if
14: end if
15: if timer expired then
16: congScen =CongestionEstimationSubroutine

(devScen1,devScen2,devScen3,prevScen,
tolerance factor)

17: prevScen = congScen
18: broadcast the information to M2M devices to start

congestion handling method for congScen
19: go to step 1
20: else
21: go to step 3
22: end if

If no variable among devScen1, devScen2 and devScen3
has sufficient value then subroutine returns previous scenario if

the previous scenario is scenario 1 or scenario 2 but if previous
scenario is scenario 3 then it returns scenario 2 because in
scenario 3, eNB uses EAB as a congestion handing method
which bars some of the devices from accessing the network.
So, if the difference between the values of devScen3 and
λ2 is not much, then it is better to return scenario 2 or
moderate congestion scenario in place of returning scenario 3
or extreme congestion scenario. Extreme congestion scenario
happens when almost all devices are unable to access the RAN
due to congestion. So if we have a good amount of devices in
scenario 2 then it is better to keep the network in scenario 2.
Now based on the returned value, function chooses a con-
gestion handling method suggested by BCHMS algorithm.
After choosing the appropriate method, the function broadcasts
this message to all devices in the coverage area of eNB so
that devices will perform RACH procedure with the method
suggested by eNB.

Algorithm 3 Congestion Estimation Subroutine

Input: devScen1,devScen2,devScen3,prevScen,
tolerance factor

Output: Congestion Scenario
1: x = tolerance factor
2: if devScen1 > (100+x)devScen2/100 and devScen1 >

(100 + x)devScen3/100 then
3: scenario = scenario1
4: return scenario
5: else if devScen2 > (100 + x)devScen1/100 and
devScen2 > (100 + x)devScen3/100 then

6: scenario = scenario2
7: return scenario
8: else if devScen3 > (100 + x)devScen1/100 and
devScen3 > (100 + x)devScen2/100 then

9: scenario = scenario3
10: return scenario
11: else
12: if prevScen == scenario3 then
13: scenario = scenario2
14: return scenario
15: else
16: scenario = prevScen
17: return scenario
18: end if
19: end if

V. SIMULATION RESULTS AND ANALYSIS

MatLab has been used for simulation of congestion in
RACH procedure. All simulation parameters are taken from
3GPP specifications 37.868 [9]. We have taken user or device
arrival distribution as beta distribution. Simulation parameters
are given in Table I.
In Table II, for different values of n in numbering scheme,

number of successful users and average access delay are shown
for different number of users. From n = 4 to n = 8, number
of successful users are increasing but from n = 8 to n = 12

TABLE I: Simulation Parameters

Parameters Values
Number of preambles 54
Number of MTC devices 1000 to 30000
Number of preamble re-
transmissions

10

HARQ retransmission
probability

10%

Preamble detection proba-
bility

1- 1/ei where i is the ith
preamble transmission

PRACH slots per frame 1
λ1, λ2, α 3, 10, 0.7
Simulation Time 10s
BackOff Time 20ms
User Arrival Distribution Beta Distribution

and from n = 12 to n = 16, rate of increasing of successful
users is low. From n = 4 to n = 8, average access delay
is either decreasing or slightly increasing because in case of
n = 4 success rate is low while for n = 8, success rate is
more but due to more spread accesses of users, average access
delay is affected. From n = 8 to n = 12 and from n = 12
to n = 16, spread in access is more, so rate of increasing of
average access delay is more. So, from above analysis we can
conclude that most suitable value for n is 8.
In Table III, results of BCHMS algorithm is shown. The
required parameter λ is calculated by simulating the RACH
procedure without any congestion handling method (base case)
and we found that value of λ for scenario 1 i.e. λ1 is 3 and
value of λ for scenario 2 i.e. λ2 is 10. We run the algorithm
for various congestion handling methods specified in 3GPP
specifications and note the value of t1, t2 and k as shown in
Table III. From the table we can observe that in case of no con-
gestion scenario, value of k is highest for Numbering Scheme
(NS) while in case of moderate congestion scenario value of k
is highest for p-persistent. So from Table III, we can conclude
that NS is best for no congestion scenario and p-persistent is
best for moderate congestion scenario. Further, these results
are used by ARC Function. As discussed in previous section,
when eNB runs ARC Function at a particular time instant, it
first estimates the condition of congestion in the network. If
condition of congestion is no congestion scenario then eNB
chooses NS as congestion handling scheme as concluded from
Table III. Similarly, if it is moderate congestion scenario then
eNB chooses p-persistent and if congestion level is extreme
congestion scenario, then eNB chooses EAB. So by using this
function, eNB alleviates the effect the congestion significantly.

TABLE II: Different values of n in Numbering Scheme

No. of
users No. of successful users Average access delay

n =4 n =8 n =12 n =16 n =4 n =8 n =12 n =16
10000 7031 7126 7193 7291 235 229 222 215
20000 4571 6471 6556 6621 595 564 653 688
25000 3822 5924 6054 6126 530 542 549 684
30000 3697 4919 5032 5037 569 566 692 725

TABLE III: Results of BCHMS algorithm

Schemes No Congestion Moderate congestion
t1 t2 k t1 t2 k

Numbering 195 195 331.5 60 65 105.5
Slotted Access 45 55 83.5 25 45 56.5

BackOff Indicator
Adjustment 40 60 82 30 45 61.5

p-persistent 160 210 307 80 70 129

To evaluate the performance of ARC function, we use
following parameters: (i) number of successful users (ii) aver-
age access delay per device (iii) average backoff per device.
Average access delay per device is defined as average of
difference between the time when a device is ready to start
RACH procedure and the time when its RACH procedure
finishes successfully. Average backoff per device is defined
as average number of backoff done by a device before being
successful.
Comparison of performance of ARC function with other
congestion handling methods is shown in Figure 2, Figure 3,
Figure 4 in terms of number of successful users, average access
delay per device and average backoff per device respectively.
Since the simulation time is 10 seconds, if number of users
are 10000 it means that 10000 users or devices attempted to
do RACH procedure in 10 seconds. In the figures base case is
the case when there is no congestion handling method is used
to evaluate the performance parameters.
Figure 2 shows the number of users versus number of suc-
cessful users graph. In the figure, we can see that some of the
methods like backoff indicator adjustment, base case, slotted
access and NS perform good when number of users are less.
Among these methods NS performs better. But when number
of users increase, their performance degrade. In case of p-
persistent, its performance improves upto certain extent when
number of users are more. Because, when number of users
are less, due to the factor p so many devices are unable to
access the network. But when number of users are more,
the same p helps to spread the access and consequently
success rate increases. But, the ARC function perform best in
both conditions because it chooses best congestion handling
methods of both congestion scenarios.
Figure 3 shows the number of users versus average access
delay graph. Performance of backoff indicator adjustment is
not good because of longer backoff. In figure 3 as number of
users increase, average access delay increases fastly for ARC
function in comparison to NS and p-persistent because in beta
distribution occurrence of EAB condition will be more. As
we know that during EAB, some of the active devices will be
barred from accessing the networks and they will be allowed
to access the network only after removal of EAB condition.
So, average access delay will be more for ARC function.
Figure 4 shows the number of users versus average backoff
per device graph. As number of users increase, success rate
decreases rapidly in case of backoff indicator adjustment, base
case, slotted access and NS. So, average backoff will increase

rapidly. ARC function performs best because when congestion
is higher, EAB will be implemented. So, some of the devices
will be barred. So, average backoff per device will decrease.
In case of other congestion handling methods, they will not
be barred even in high congestion so devices will keep on
accessing the network. As a result, average backoff per device
will increase.

 0

 2000

 4000

 6000

 8000

 10000

 5000 10000 15000 20000 25000 30000

N
o
.
o
f
S

u
c
c
e
s
s
fu

l
U

s
e
rs

No. of Users

ARC
Backoff Indicator Adjustment

Base case
Slotted Access

p-persistent
NS

Fig. 2: Number of Successful Users

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5000 10000 15000 20000 25000 30000

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
s
)

No. of Users

ARC
Backoff Indicator Adjustment

Base case
Slotted Access

p-persistent
NS

Fig. 3: Average Access Delay

VI. CONCLUSIONS

In this paper we studied the performance of various RACH
congestion handling methods. We saw that each method
performs best with some particular congestion state of the
network and does not perform very well when the load in
the network is different. We proposed a novel congestion
handling method, numbering scheme (NS), which performs
very well when the load on the network is low to medium.
We also proposed an algorithm, BCHMS Algorithm, by which
we can find out which method performs better in a given
congestion state of the system. A novel RACH congestion

 0

 5

 10

 15

 20

 5000 10000 15000 20000 25000 30000

A
v
e
ra

g
e
 B

a
c
k
O

ff
 P

e
r

D
e
v
ic

e

No. of Users

ARC
Backoff Indicator Adjustment

Base case
Slotted Access

p-persistent
NS

Fig. 4: Average BackOff Per Device

management function (ARC), was proposed which estimates
current load in the cell and then decides which congestion
handling method is to be used by MTC devices. Simulation
results show that ARC function performs better than any single
congestion handling method and is able to perform well in
both low and high RACH congestion cases. When the load of
the system becomes too high for eNB to handle, then it will
perform EAB mechanism to do admission control.

ACKNOWLEDGMENT

This work was supported by the Deity, Govt of India (Grant
No. 13(6)/2010CC&BT).

REFERENCES

[1] Min Chen, Jiafu Wan and Fang Li, “Machine-to-Machine Communica-
tions:Architectures, Standards and Applications”, Transactions on
Internet and Information Systems, vol. 6, no. 2, February 2012.

[2] 3GPP TS 22.368 V11.3.0, “Service requirements for Machine-Type
Communications (MTC);Stage 1”, September 2011.

[3] 3GPP TR 22.868 V8.0.0, “Study on Facilitating Machine to Machine
Communication in 3GPP Systems”, March 2007.

[4] M. Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang and Jia
Wang, “A First Look at Cellular Machine-to-Machine Traffic Large Scale
Measurement and Characterization”, SIGMETRICS, June 2012.

[5] 3GPP TS 36.321 V10.0.0, “Evolved universal terrestrial radio access (E-
UTRA) medium access control (MAC) protocol specification”, December
2010.

[6] 3GPP TS 36.101 V10.4.0, “User Equipment (UE) radio transmission and
reception”, September 2011.

[7] 3GPP RAN2 69bis, R2-102296, “RACH Intensity of Time Controlled
Devices”, Vodafone, April 2010.

[8] 3GPP RAN2 69bis, R2-102297, “RAN Mechanisms to Distribute RACH
Intensity”, Vodafone, April 2010.

[9] 3GPP TR 37.868 V0.5.1, “Study on RAN Improvements for MachineType
Communications”, August 2010.

[10] Ming-Yuan Cheng, Guan-Yu Lin, and Hung-Yu Wei, “Overload Control
for Machine-Type-Communications in LTE-Advanced System”, IEEE
Communications Magazine, vol. 50, no. 6, pp. 38-45, June 2012.

[11] Shiann-Tsong Sheu, Chun-Hsiang Chiu, Yen-Chieh Cheng, and Kai-Hua
Kuo, “Self-Adaptive Persistent Contention Scheme for Scheduling Based
Machine Type Communications in LTE System”, iCOST, July 2012.

