Predicting Performance of Channel Assignments in Wireless Mesh Networks through Statistical Interference Estimation

### Srikant Manas Kala, **Pavan Kumar Reddy M**, Bheemarjuna Reddy Tamma

CSE Department, Indian Institute Of Technology, Hyderabad

### CONECCT 2015

<ロ> (四) (四) (三) (三) (三) (三)

| 0000000 |    | 00 |  |  |
|---------|----|----|--|--|
| Overvi  | ew |    |  |  |



- 2 Interference Characterization
- 3 Interference Estimation
- 4 Simulations & Results
- **5** Conclusions



Interduction Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work Wirless Mesh Networks (WMNs) A Promising Technology

- Potential for widespread application.
  - Low-cost availability of IEEE 802.11 hardware.
  - Ease of scalability and reconfigurability.
  - Tremendous increase in data communication rates guaranteed by IEEE 802.11 and IEEE 802.16 standards.
- Wireless technologies that benefit from WMN deployments.
  - IEEE 802.11 WLANs, Wireless Metropolitan Area Networks (WMANs), Cellular mobile systems including LTE-Advanced etc.

# Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work

- A single Gateway WMN.
- Mesh-routers and mesh-clients.
- Multi-Radio Multi-Channel (MRMC) Deployment.
- Only inter mesh-router communication issues considered.



Figure: A Simplistic WMN Architecture

# Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work

Concepts and Terminology I

Let G = (V, E) represent an arbitrary WMN.  $V \rightarrow$  Set of nodes in G,  $E \rightarrow$  Set of wireless links. Let  $i \in V$ ,  $j \in V$ , such that  $(i, j) \in E$ .

#### Conflict Links

∀(m,n) ∈ E, for which the transmitting range of the radio at node m or n, extends upto, or beyond node i or j, are the conflict links of link (i, j).

#### Interference Degree

• The Interference Degree of link (*i*, *j*), is the total number of links in E which are the conflict links of (*i*, *j*).





 Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work

## Concepts and Terminology III

### Total Interference Degree or TID

- An approximate estimate of the interference prevalent in a WMN.
- Computed by halving the summation of the *Interference Degree* of all the links in *G*.

### Channel Assignment (CA) Scheme

- CA can be understood as,  $C_i = CA(i, R_i)$ , where
  - Each node *i*, has random number of identical radios *R<sub>i</sub>*.
  - $C_i \Rightarrow$  List of channels assigned to  $R_i$ .

• Assumption : Number of available channels  $> (R_i)_{max}$ 

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work

- Interference  $\rightarrow$  Most debilitating factor in network performance.
- Minimizing interference in WMNs is a primary objective.
- Mainly achieved through a prudent channel assignment (CA) scheme, which
  - Enhances network capacity.
  - Reduces end to end latency.
  - Reduces data packet loss.

Introduction Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work

## Selecting the Right CA scheme for a WMN

- Multitude of CA schemes in research literature.
- $\bullet\,$  Choosing an efficient CA for a WMN  $\to$  A tedious task.
- Absence of CA performance prediction techniques.
- $\bullet~{\sf TID} \to {\sf Conventional}$  approach of estimating interference.
  - Considers spatial proximity of links for interference estimation.
  - Not a reliable metric.





• Loss in data packets should increase.

Interference Characterization Interference Estimation of Simulations & Results Conclusions Future Work TID : A Reliable Metric ? Observed Correlation Between Throughput & TID



- A result from our previous study [2].
  - Labels denote the CA schemes used.
  - Aggregate network throughput of CAs plotted against TID values.

10/25





- Labels denote the CA schemes used.
- Average Packet Loss Ratio of CAs plotted against TID values.

10/25



#### Observed correlation $\Leftrightarrow$ Expected Correlation

• TID  $\rightarrow$  Not a reliable metric for interference estimation.  $\rightarrow$  Not suited to predict CA performance in a WMN. Introduction Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work

## Fresh Characterization of Interference in WMNs

- We propose a fresh characterization of interference.
- We consider interference to be a three dimensional entity.
- The three dimensions are
  - Temporal
  - Spatial
  - Statistical
- We employ this model for interference estimation.

Interference Estimation

ation Simulations & Results Conclusions Future Work

# The Three Dimensions of Interference

### Temporal Characteristics

 $\bullet\,$  Data transmissions in Wireless network  $\rightarrow\,$  Not synchronized

 $\rightarrow$  Random.

 $\bullet$  Interference complexities  $\rightarrow$  Function of time

 $\rightarrow$  Fundamentally temporal.

#### Spatial Characteristics

- Link Conflicts  $\rightarrow$  Spatial proximity && Identical channel.
- Spatial interaction of wireless links  $\rightarrow$  Interference in WMNs.

Interference Estimation

Simulations & Results Conclusions Future Work

# The Three Dimensions of Interference

### Statistical Characteristics

- Channel assignment to radios  $\rightarrow$  Complexity of interference.
- $\bullet\,$  Even distribution of channels among radios  $\to\,$  Fewer wireless conflicts.

Interference Estimation

Simulations & Results Conclusions Future Wo

# Statistical Interference Estimation

#### Factors Contributing To Idea Development

- TID is not a reliable metric.
- Statistical distribution of channels is linked to CA performance.

#### Proposed Approach

- Channel Distribution Across Links (CDAL) Approach.
- Determines distribution of channels across links.
- Computes  $CDAL_{cost} \rightarrow Interference$  estimate.

# Features of CDAL Approach

### Probabilistic Selection of Links

- Transmission link selection is dynamic/temporal.
  - Happens at the MAC layer.
  - Predicting link selected for a transmission is difficult.
- Multiple links exist between two nodes.
  - Each link is considered equally likely to be selected.



IIT Hyderabad

CONECCT 2015



nterference Characterization

Interference Estimation

Simulations & Results Conclusions Future Work

00

CDAL Algorithm : A Theoretical Illustration Sample WMN 1





terference Characterization

Interference Estimation

Simulations & Results Conclusions Future Work

# CDAL Algorithm : A Theoretical Illustration Sample WMN 2





16/25

| Choice                  | of CA Scheme                  | 20                      |                       |             |             |
|-------------------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
| Introduction<br>0000000 | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |

#### CA Schemes Considered

- BFS-CA [3]  $\rightarrow$  Breadth First Search based CA.
- MaIS-CA [5]  $\rightarrow$  Maximum Independent Set based CA.
- CLQ-CA [1]  $\rightarrow$  Maximum Clique based CA.
- CEN-CA [4]  $\rightarrow$  Centralized Static CA
- GSCA  $\rightarrow$  Grid Specific CA (Minimum TID).

#### CA Scheme Representation

- E-MMCG and C-MMCG [2] versions of each CA (except GSCA)
  - C-MMCG CA  $\rightarrow CA_C$ , E-MMCG CA  $\rightarrow CA_E$ .
- Representation of CAs
  - BFS-CA (BFS<sub>C</sub> & BFS<sub>E</sub>), MalS-CA (MIS<sub>C</sub> & MIS<sub>E</sub>).
  - CEN-CA (CEN<sub>C</sub> & CEN<sub>E</sub>), CLQ-CA (CLQ<sub>C</sub> & CLQ<sub>E</sub>).
  - GSCA (GSCA).

Interference Estimation

Simulations & Results Conclusions Future Work

### Test Scenarios & Evaluation Procedure Test Scenarios

#### **Test Scenarios**

• WMN layout  $\rightarrow 5 \times 5$  Grid WMN

#### Grid WMN Test Cases

- $\textcircled{0} TC5 \rightarrow 5 \text{ concurrent 4-Hop flows.}$
- 2 TC8  $\rightarrow$  8 concurrent 4-Hop flows.
- **③** TC10  $\rightarrow$  10 concurrent 4-Hop flows.

#### Grid WMN Layout



Interference Estimation

Simulations & Results Conclusions Future Work

# Test Scenarios & Evaluation Procedure Performance Metrics

### **Observed Network Performance Metrics**

- Performance metrics for each test-case
  - Network Throughput.
  - Packet Loss Ratio.
- For every performance metric  $\rightarrow$  Average of all test-cases.
- Performance metrics for each CA
  - Average Network Throughput (Throughput).
  - Average Packet Loss Ratio (PLR).

Interference Estimatio

Simulations & Results Conclusions Future Work

### Test Scenarios & Evaluation Procedure Simulation Parameters

#### ns-3 Simulation Parameters

| Parameter                      | Value             |
|--------------------------------|-------------------|
| Radios/Node                    | 2                 |
| Range Of Radios                | 250 mts           |
| IEEE Standard                  | 802.11g           |
| Available Orthogonal Channels  | 3 (2.4 GHz)       |
| Transmitted File Size          | 10 MB             |
| Maximum 802.11g/n Phy Datarate | 54 Mbps           |
| Maximum Segment Size (TCP)     | 1 KB              |
| Packet Size (UDP)              | 1 KB              |
| MAC Fragmentation Threshold    | 2200 Bytes        |
| RTS/CTS                        | Enabled           |
| Packet Interval (UDP)          | 50ms              |
| Routing Protocol Used          | OLSR              |
| Loss Model                     | Range Propagation |
| Rate Control                   | Constant Rate     |

CA Performance Prediction in WMNs

Interference Estimation

Simulations & Results Conclusions Future Work

# Test Scenarios & Evaluation Procedure

## CA Sequences From Performance Metrics

- For every performance metric
  - CAs are arranged in increasing order of metric values.

## CA Sequences From Theoretical Estimates

- TID and CDAL<sub>cost</sub> are computed for each CA.
- CAs arranged in increasing order of expected performance.
  - CA Performance  $\propto 1/$  (TID or CDAL $_{cost}$  value).
- Increasing order of expected performance  $\rightarrow$ Decreasing order of TID/ CDAL<sub>cost</sub> values.

Interference Estimation

Simulations & Results Conclusions Future Work

# Test Scenarios & Evaluation Procedure

#### Error In Sequence (EIS) Computation

- Sequence of  $n \operatorname{CAs} \to {}^{\mathsf{n}}C_2$  comparisons.
- CA sequences from experimental metrics  $\rightarrow$  Reference.
- In CA sequences from theoretical estimates
  - CA comparisons in error are determined.
  - Prediction by estimation metric contrary to actual performance.
- Sum of all CA comparison errors  $\rightarrow$  EIS.

#### Degree of Confidence (DoC)

- $\bullet~$  DoC of estimation metric  $\rightarrow$  Reliability of CA performance prediction.
- $DoC = (1 (EIS/^{n}C_{2})) \times 100$ 
  - *n* is the number of CAs in the sequence.

Interference Estimation

Simulations & Results Conclusions Future Work

# Test Scenarios & Evaluation Procedure



- Plot recorded CA performance metrics against theoretical estimates.
- Observe the plots for expected correlation.
- Determine DoC for interference estimate accuracy.

Interduction Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work



Throughput does not decrease consistently with increase in TID.

< 合ੋ

Introduction Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work CDAL<sub>cost</sub> : Performance Evaluation Avg Throughput vs CDAL<sub>cost</sub>



• More consistent decrease in Throughput with increase in CDAL<sub>cost</sub>.

æ

Interduction Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work CDAL<sub>cost</sub> : Performance Evaluation Avg PLR vs TID Estimates



• High deviation from expected correlation.

Interference Characterization Interference Estimation Simulations & Results Conclusions Future Work CDAL<sub>cost</sub> : Performance Evaluation Avg PLR vs CDAL<sub>cost</sub>



• Lesser deviation from expected correlation.

| 0000000      |                               | 00                      |                       |             |             |
|--------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
| Introduction | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |

## Reliability of CDAL<sub>cost</sub>

#### Degree of Confidence

| Performance    | Т   | .ID            | CDA | $AL_{cost}$ |
|----------------|-----|----------------|-----|-------------|
| Metric         | EIS | <b>DoC</b> (%) | EIS | DoC (%)     |
| Avg Throughput | 15  | 58.33          | 4   | 88.89       |
| Avg PLR        | 12  | 66.67          | 7   | 80.55       |

《曰》《圖》《臣》《臣》

Ξ.

| Introduction<br>0000000 | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |
|-------------------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
|                         |                               |                         |                       |             |             |

## Conclusions

#### CDAL<sub>cost</sub> Interference Estimation

- Reliable prediction of CA performance.
- More accurate than TID.
- Lesser computational cost  $O(n^2m^2)$  than TID  $O(n^2m^3)$ .
  - $n \rightarrow$  Number of nodes in the WMN.
  - $m \rightarrow \text{Number of radios on each node.}$

| <b>F</b> uture          | \\/~ulr                       |                         |                       |             |             |
|-------------------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
| Introduction<br>0000000 | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |

- Verify accuracy of CDAL<sub>cost</sub> in other WMN layouts.
- Devise a better metric than CDAL<sub>cost</sub> through.
  - Spatio-statistical accounting of interference.
  - Link-quality based interference estimation.
- Use CDAL<sub>cost</sub> as an optimizing function in CA schemes.

| -            |                               |                         |                       |             |             |
|--------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
|              |                               |                         |                       |             |             |
| Introduction | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |

### References I

- Yu Xutao, Xu Jin, "A Channel Assignment Method for Multi-channel Static Wireless Networks", IEEE, 2011.
  - S. M. Kala, M. Reddy, R. Musham, and B. Tamma, *Interference mitigation in wireless mesh networks through radio co-location aware conflict graphs*, *Wireless Networks*, pp. 124, 2015. [Online]. Available: http://dx.doi.org/10.1007/s11276-015-1002-4
- Krishna N. Ramachandran, Elizabeth M. Belding, Kevin C. Almeroth, Milind M. Buddhikot, *"Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks"*, INFOCOM, 2006.
  - Hongju Cheng, Guolong Chen et. al., "Static Channel Assignment Algorithm in Multi-channel Wireless Mesh Networks", Cyber-Enabled Distributed Computing and Knowledge Discovery, 2009.
  - Aizaz U. Chaudhry, John W. Chinneck, and Roshdy H.M. Hafez, "Channel Requirements for Interference-free Wireless Mesh Networks to Achieve Maximum Throughput", ICCCN, 2013.

→ ∃ → < ∃</p>

| Introduction | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |
|--------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
|              |                               |                         |                       |             |             |

# THANK YOU

æ

글 > - ( 글 >

| Introduction | Interference Characterization | Interference Estimation | Simulations & Results | Conclusions | Future Work |
|--------------|-------------------------------|-------------------------|-----------------------|-------------|-------------|
|              |                               |                         |                       |             |             |

# QUERIES ?

□ > < E > < E >

æ