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Abstract—Wireless Mesh Network (WMN) deployments are II. MOTIVATION AND RELATED RESEARCHWORK
poised to reduce the reliance on wired infrastructure espdally
with the advent of the multi-radio multi-channel (MRMC) WMN

architecture. But the benefits that MRMC WMNs offer viz,  The measure of the degradation of network performance by
augmented network capacity, uninterrupted connectivity and

reduced latency, are depreciated by the detrimental effeciof mterference_ln a WMN deployment |s_|ntr|cately linked tceth_
prevalent interference. Interference mitigation is thus aprime ~channel assignment (CA) scheme being employed. There is a
objective in WMN deployments. It is often accomplished thrugh  multitude of CA schemes which can be implemented in any
prudent channel allocation (CA) schemes which minimize the WMN deployment. However, selecting the most efficient and
lf‘odr‘rﬂiece'mﬁ%CteOfer'm:ffﬁ:eEF;ed:”gfegga“sccehé%ee:eﬁ’;oék per feasible CA from the enormous set of all CAs, for a given

. Wwever, ultitu \Y H H H H
proposed in research literature and absence of a CA performace WMN of Certal_n architecture and topology, is a tedIOL!S .taSk'
prediction metric, which could aid in the selection of an effcient Further, there is an absence of CA performance prediction or
CA scheme for a given WMN, is often felt. In this work, we offer estimation techniques in the research literature thatdcaid
a fresh characterization of the interference endemic in wieless a network administrator in making this crucial choice. The
networks. We then propose a reliable CA performance predic- conventional approach of estimating impact of interfegenc

tion metric, which employs a statistical interference estnation . : :
approach. We carry out a rigorous quantitative assessmentfdahe in a WMN is to compute the total interference degree or

proposed metric by validating its CA performance predictions 11D [3l, Wh?Ch equals half the sum dﬁte_rference degrees
with experimental results, recorded from extensive simulions Of all the links in the graph representing a WMN. Here

run on an ns-3 802.11g environment. interference degree denotes the number of links that may po-
tentially interfere or conflict with a given link. A TID estiate
|. INTRODUCTION accounts for every potential conflict link in the WMN and is

Wireless Mesh Networks (WMNs) have sparked a gre_g{enerated th_rough itsonflict graph Thus, the TID estimate
interest in the research community as they offer reliable @1 approximate measure of the endemic interference, and
connectivity coupled with remarkably enhanced bandwidths magnitude is often assumed to be a reliable measure of the
The most effective WMN framework is the multi-radio multi-2dverse impact of interference. For example, in interfeeen
channel (MRMC) deployment, which harnesses the avaitgbilidware CA schemes, the guiding idea is to lower the TID to
of several non-overlapping channels under the IEEE 802.feduce the intensity of prevalent interference and make the
and IEEE 802.16 standards. However, the advent of WiMikA more efficient [[4]. However, in a recent study [5], we
technology has also spawned a plethora of performanceoblalﬂave demonstrated that although TID does give a measure of
issues in WMNSs, which include the problems of channdpe impact of interference, it is inconsistent and unrédiats a
allocation to radios, routing, scheduling etc. At the cofe &A performance pred_ictior), or inte_rference estimationrioet
these issues lies the impeding factor of interference, visc Thus, we can not, with high confidence, compare two CAs
caused and experienced by concurrently transmitting sadi@" Select the most efficient CA for a given WMN from a set
operating on the same channel and located within each sthé&f CA schemes by employing their TID estimates as the sole
interference range. Consequently, interference is thglesincriterion for performance prediction. Secondly, TID esitron
most debilitating factor in WMN performance and substdnti& computationally expensive.

research effort is focused on mitigating and restrainirgg itn this work, we aim to remedy this problem by first proposing
adverse impact. Minimizing interference in a WMN is a fresh theoretical characterization of the interferemegadent
primary network design consideration often achieved thhouin WMNs. We then suggest an intuitive statistiaaterference

a prudent channel assignment (CA) to the radios in the WMHstimationor CA performance predictiotechnique, based on
The CA problem is an NP-Hard problern| [1] and numeroube proposed classification. Through extensive simulative

CA schemes have been proposed in prior research studiesd@inonstrate that the proposed metric is more reliable tian t
which strive to alleviate the impact of interference thrbwy conventional TID metric. In addition, the proposed metigna
variety of innovative approaches. consumes lesser computational resources.
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reprinting/republishing this material for advertising mmomotional purposes, creating new collective works, &wate or redistribution to servers or lists,|or
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[1l. INTERFERENCEIN WMNS: A FRESH Consequently, this spatial interaction of wireless links i
CHARACTERIZATION a fundamental feature of endemic interference.

3) Statistical Characteristics: The complexity of interfer-
ence in a WMN is intricately linked to the assignment of
available channels to the radios in the WMN. An even
and judicious distribution of channels among radios will
spawn fewer wireless conflicts as compared to a skewed
distribution.

The classification of interference in wireless networksasdu
on the source of the conflicting wireless transmissions on
an identical channel. Thus, it is categorized initernal,
externalandmulti-path fadindl6]. However, this view is rather
simplistic and fails to reflect the inherettiaracteristicawvhich
are intrinsic to all forms of interference affecting the @lass
communication, regardless of their source or cause. Wetadop IV. INTERFERENCEESTIMATION

a fresh approach to elicit these inherent characteristfcs o o . .
: . : . S It}terference estimation, alignment and cancellation a&e e
interference as they aid us in assessing and estimating ||

adverse impact on the network performance. We consiatgF“Shed NP-Hard problems][7]. A theoretical estimate of

a single-gateway WMN model depicted in Figie 1, whiclh erference is only an approximate prediction of the WMN

comprises of mesh-routers (nodes) and mesh-clients. pleilti perfo_rmance under a particular C_:A scheme. It helps_ tp avoid
. : : - the time and resource consuming task of ascertaining CA
radios are available for inter mesh-router communicatioth a

we focus on the interference characterization of the megﬁrformance by implementing a CA in t_he WMN and carrying
out real-time assessments. A TID estimate is the commonly

backbone. e used measure of the impact of endemic interference on WMN
@ N esn Routr performance. The TID metric only factors in the spatial aspe
T e vk of interference by generating an estimate of the link cotsflic
and does not take into account the other two dimensions.
‘Jﬁl “;‘MC} In this work we employ the proposed characterization of
T & interference to design an estimation algorithm which cater
; purely to a single dimensione., the statistical aspects of
" interference, and offers a more reliable metric than TID.
p "‘5\,‘“_“_‘ ) A. A Statistical Interference Estimation Approach
; We propose a scheme predicated on the notiostafistical
eve|_1ness3f qhanne_l allocation, which postulates that a pro-
; portionate distribution of the available channels among th
T o radios will occasion an efficient CA. An even distribution of
e e e channels among radios in a WMN ensures fairness and boosts

Fig. 1: WMN Architecture For Interference Characterizatio ~ Performance, as demonstratedlin [8]. We name itGhannel
Distribution Across Linksor CDAL algorithm. The name is
Next, to study these characteristics we consider a netwadrklicative of the underlying technique in which we deterenin
scenario in which all nodes are active participants of rpldti the number of links operating on each channel taking the
concurrent wireless transmissions. Each node functions ashannel allocation to radios in the WMN as input.

source, or a destination, or an intermediate node relaying =&, &, R, Ry
the data packets onto the next hop. As all nodes transmit in 12 [t Chamnell.
tandem, they trigger and intensify the intricate intenfee e e @ —————— haa(3 @

bottlenecks in a WMN, fashioning a prefect scenario in which
interference can be considered to be a three dimensiorig, ent _ _ ) o
the dimensions beingmporal, spatial and statisticaWWe now Fig. 2: Link Selection For Transmission

deliberate over this three dimensional model which camst#t A theoretical estimation approach is fundamentally static
the set of characteristics of the endemic interference. will fail to acknowledge thedynamicor temporalcharacteris-

1) Temporal Characteristics : These characteristics rep-tics of interference. Further, determining the link sedelcfor
resent thedynamismin the interference scenarios. In aa radio transmission and identifying the channel assigoed t
wireless network the transmissions are seldom synchtbe link are non-trivial problems, as link selection is a Néed
nized, and on the contrary, are quite random. Thus, thecess Control (MAC) mechanism. The standard approach of
interference complexities that are spawned in the netwaoke flow transmission per radimandates that the radio which
are a function of time and fundamentally temporal.  experiences the least interference or exhibits the highigsal

2) Spatial Characteristics: Link conflicts in a WMN are to interference plus noise rati(6INR) should be used for the
a result of two or more interfering links which are intransmission. Thus, the link with the best network paransete
close proximity. The links emanating from two radioss selected for transmission. But tlgiality of a link vis-a-
transmitting on an identical channel would interfefe vis the interference degrading its efficiency, is a dynanric o
and only ifthey lie within each other'mterference range temporal entity and can only be observed in real-time data

(i) Network Topology (i) Available Communication Channels



transmissions. Also, the concept pérallel transmissionds Algorithm 2 Function ProbChannelSelect()

being leveraged in wireless networks by transmitting datErobabilistic Selection Of Links)

simultaneously through multiple radios installed on a nf@fle Input: G = (V, E), CS = {1,2,..M}, CD[M]

These factors further complicate the theoretical deteation G : WMN Graph,CS : Available Channel Set

of the link over which a transmission may occur in real-time. ¢CD : Channel Distribution Set of siz#/.

To overcome these constraints, we adogirababilistic link Output: OutputCD i.e, link count of each channel io's
selectionapproach. In doing so, we account for the temporal
characteristics up to some extent by introducing randomnes: for i € V do

in the link determination. Let us consider the trivial netiwo 2: DetermineCh; and Adj; {Ch; : Set of channels allo-
topology presented in Figufd 2 (i), where both nodleand cated to the radios at noden G. Adj; : Set of nodes
nodeC are equipped with two identical radios. L&hannel; adjacent to node in G}

andChannel, be two orthogonal channels which are assigned: end for

to one radio each of both the nodes. If nodésand C 4 for i € V do

wish to communicate with each other at any moment, thep: for j € Adj; do

can use either of the two non-conflicting linke., wireless Get ComCh;; {Set of common channels assigned to
Link, over Channel; or wirelessLinks over Channels. It radios of nodeg: & j)}

is difficult to ascertain the temporal selection made at the: let p < [ComChy;|

MAC layer. Thus, we take a probabilistic view that if the 8: for k € ComCh;; do

described two-node network were to actively transmit data f 9: CDlk—1] «+ CD[k—1]+ (k/p) {Increment the link
an infinite period,Link; and Links, would be equally likely count of channek}

to be selected for transmission, as the probability of eithéo: end for

link being chosen would converge 192. From a perspective 11:  end for

of practical application, we invoke theentral limit theorem 12: end for

and assume that in case of availability of multiple links for o .

transmission, each is equally likely to be chosen. Restilts w?€t CD. Therefore the cardinality of s&t'D is equal to the
demonstrate that this innovative link selection approaeiu$ number of available channeilg., the cardinality of seC'S. A

to reliable estimates, because it facilitates the incluisiad Pair of nodes may have multiple channels at their disposal

accounting of the temporal characteristics of interfeeenc {0 communicate with each other. As per our assumption,
each channel is equally likely to be selected and due to

Algorithm 1 Channel Distribution Across Links this probabilistic link selection approach, the link-codar
Input: G = (V,E), Ri(i € V), CA={(R;,C),i € V}, a channel could be fractional.
CcS=1{1,2,..M} Now, we devise a statistical mechanism to estimate the effi-
Notations: G +— WMN Graph, R; + Radio-Set, ciency of a CA scheme. Translating the channel distribution
CS + Available Channel Set into a statistical metric would require the processing pkdi
Output: CDAL cos¢ counts of channels on a purely quantitative basis. For elamp

in a 20 node WMN the ordered sétD may have the link-
1: LS « FindLinkSet(G,CA) {LS : Set of all wireless links count element$9,8,6} for the three non-overlapping channels

present inG} C1, Cy andCs, respectively. We contend thataD of {6,9,8}
2. CD <« ProbChannelSelect() {CD : Set of link-count of or {8,9,6; should generate the same final CDAk as aC'D
each channel 'S} of {9,8,6}, because we are observing the channel-distribution
3: CDALcost + StdDev(CD) with a purely statistical perspective.

4: Output CDAL,.; {Estimation Metric of CDAL algorithrp  To engineer a quantitative statistical metric, we comphee t
standard deviatiorof link-counts inC D and consider it to be
We now the present the CDAL algorithm followed by a&he CDAL..s:. There is a two-fold objective in employing the
detailed description and a suitable example. The CDAL atandard deviation of link-counts as the metric. Firstsitai
gorithm, illustrated in Algorithni1l, generates an inteefete measure of the variation or dispersion of a set of data values
estimate for CA schemes which we call thdDAL.,,;. The from the mean. Since an equitable distribution of channels
first step in the process is to determine the set of all wiseleamong radios is desirable, the closer CRAL is to 0, the
links present inG, which is accomplished by the functionmore proportionate is the channel allocation. Second, as th
FindLinkSet. The next step entails a probabilistic selectiosize of WMN is scaled up in terms of nodes and the num-
of links, followed by the task of ascertaining the distribat ber of radios, TID computation becomes more complex and
of channels across all links. These tasks are performed dymputationally intensive. In contrast, determining CRAL

the function ProbChannelSelect which implements Algo- of a CA requires lesser computational overhead. Since the
rithm [2. For every channel, the function computes link- CDAL.,.; is a measure of dispersion from the ideal equitable
count i.e, the number of links that have been assigned thdistribution, lower is the magnitude of the CDAJ,;, better is
particular channel and inserts the link-count value inte ththe expected performance of CA when deployed in a WMN.




We now illustrate the effectiveness of the CDAL estimatioA. Simulation Parameters

by applying it to two CA sghemes, tmaximal Indepelnd.ent Simulations are performed in ns-3 [11] to record the perfor-
Set CA(MIS) [10] and Rad_|o Co—locatlop Aware Opt'_m'zedmance of CAs in a simulated x 5 grid WMN compris-
Independent Set CAOIS) [€]. OIS alleviates the radio €o-j,o of 95 nodes. The simulation parameters are presented
location interference and incorporatstatistical evennesas Table[Tl. A 10 MB file is transmitted from the source
a fundamental design pbjective. It is demonstratediin [t ;5 e destination in every multi-hop TCP and UDP flow.
le outperforms MIS in terms of netwgrk performance Metcp and UDP transport layer protocols are implemented
rics namely, throughput, packet loss ratio and mean delay. YW 15 3 through the inbuilt applicationBulkSendApplication
compute the CDAL,, for all the OISs and MISs implemented, 4 ygpclientServerrespectively. Through TCP simulations
in grid WMNs (.)f 5|z_e(N x N, "Yher?‘N €1{5,....8}. The we determine theaggregate network throughpuwthile UDP
results are depicted in Talile I. It is evident that OIS CDAL simulations offer us thpacket loss ratipwhich we henceforth

is consistently lower than MIS CDAL;, which conforms to denote as Throughput and PLR, respectively, for an easy
their relative performance in actual experiments.

discourse.
TABLE I: OIS CDAL cost VS MIS CDALcost TABLE II: ns-3 Simulation Parameters
Grid Num of CDAL st
Size Radios MIS oIS | Parameter | Value |
5x5 50 4.48 2.86 No. of Radios/Node 2
6x6 72 6.86 6.33 Range Of Radios 250 mts
<7 98 8.87 5.88 Available Orthogonal Channels | 3 in 2.4 GHz
8x8 128 13.76 8.59 Maximum 802.11g PHY Datarate 54 Mbps
Maximum Segment Size (TCP) | 1 KB
Packet Size (UDP) 1KB
B. Time Complexity of CDAL Algorithm MAC Fragmentation Threshold | 2200 Bytes
) _ RTS/CTS Enabled
We consider an arbitrary MRMC WMNZ = (V, E) com- Routing Protocol OLSR

prising of n nodes, where each node is equipped with
identical radios. The most computationally intensive step _ o _
the CDAL algorithm is to determine th€omCh,; for each B. Traffic Characteristics and Test Scenarios

pair of adjacent nodes& j, and then incrementing the link-\we conceive a comprehensive setiata traffic characteristics
count accordingly. This step has the worst case complexifich is crucial to highlight the performance bottlenecks-c

of O(n?m?) which also makes it the upper bound for overalited by the endemic interference. We establish 4-Hop-Flows
computational cost of the CDAL algorithm. In comparisorgetween the first and the last node of each row and column,
the complexity of determining the TID estimate is of the ardeyng 8-Hop-Flows between the diagonal nodes of the grid.
O(n?m?). This is because the adjacency relationships haveyigrious combinations of these multi-hop flows are formudate
be established at the radio-to-radio granularity, for alies in  to engineer test-scenarios for the grid WMN. For each tasec

G. Next, conflict links are determined for each radio-to-cadityg set of experiments are carried oz, one set employs
link in the WMN, leading to an algorithmic complexity of 5y TCP flows and the other comprises of only UDP flows.

O(n®m®). Thus, in comparison to the worst case complexiyour high traffic test-scenarios consisting of the follagin

will be more pronounced with the increase in the number ef node grid WMN :

radios attached to a node. @) 5 (ii) 8 (iii) 10 (iv) 12.
These test-scenarios of increasing levels of interferemse
V. SIMULATIONS, RESULTS AND ANALYSIS quately capture the interference characteristics of a Wafid,

are thus ideal to demonstrate the overall performance of a CA

We assess the efficiency and performance of CRALIn implemented in a WMN.

comparison to the TID estimates through a meticulous pro- )

cedure elucidated heréa) Choose the WMN topology and aC- Selection of CA Schemes

comprehensive data traffic scenar{b) Implement a hetero- We implement a diverse set of 5 CA schemes, which range
geneous mix of CA schemeg) Run extensive simulations to from the low performanceentralized static CAcheme (CEN)
obtain aggregate performance metrics for the QAsSubject [12] to the high performancgrid specific CAscheme (GSCA).
the CAs to the two interference estimation approachiezs GSCA is designed for maximal performance in the current
TID and CDAL.,s:. (e) Consider the sequence of CAs withsimulation set-up by ensuring a minimum TID of the channel
respect to observed performance metrics as reference, afidcation through a rudimentary brute-force approachne®t
determine theerror in sequencein each of the estimation CA schemes that we implement are tireadth first traversal
approaches. approach (BFS) [13], a statmaximum cliquéased algorithm



(CLQ) [14] and amaximum independent seased scheme < CLQc < CENg < CLQr < BFS: < BFSg < MIS¢ <
(MIS) [10]. MISE < GSCA) CEN: being the least efficient and GSCA
We employ two multi-radio multi-channel conflict graph modbeing the best in the CA sample set. The CA sequences
els (MMCGs)viz,, the conventional MMCG (C-MMCG) and in terms of TID and CDAL,s: can also be determined in
the enhanced MMCG (E-MMCG) _[5] to implement each o$imilar fashion. For both these metrics, a high magnitude
the above CA schemes, except GSCA. C-MMCG represenfsthe estimate implies high interference in the WMHN,,

link conflicts in a traditional fashion and does not take inteC'A Per formance x 1/Estimate Value). Thus, we order
consideration the impact of radio co-location interfeendhe CAs in the decreasing order of estimate values. CA
(RCI) in a wireless network. E-MMCG is an improved versiosequence for TID is (BFSy < CLQc < MISg < BF&: <

of its conventional counterpart as it does a comprehens@&Ng < CENo < CLQg < MISg < GSCA) The CDAL., s
accounting of all RCI interference scenarios in its linkftich CA sequence is (CEN- < CENgp < CLQr < CLQg <
representation of the WMN. CAs that are generated with BAISc < BFSg < BFS < MISg < GSCA) Coming to CA
MMCG as the underlying conflict graph model demonstrammparisons, CDAL,s: sequence causes only 4 upsets while
more effective interference mitigation which results in aflD registers as many as 15 false comparisons. Thus, in terms
enhanced network performance [5]. Thus, we have a total @fAvg Throughput the EIS for CDAL,; and TID is 4 and 15,

9 CA schemes and for ease of reference, we will denote a @spectively. The corresponding DoC values which repttesen
MMCG based CA as” A¢ and its corresponding E-MMCG the measure of reliability of a prediction estimate, for tato
version asC' Ag. GSCA is denoted simply aSSCA. of 36 °Cy) CA performance comparisons, are 88.89% and

) 58.33% for CDAL..s; and TID, respectively.
D. Results and Analysis

. . . 45
An exhaustive set of simulations were run and the values org cecn CA Schemes —&~
performance metriceiz, Throughput and PLR were recorded. 2 40
For each CA, we compute the mean of the recorded values & 35

all test-scenarios to generate the average performanaesmet % a0l
for the CA, denoted byAvg Throughputand Avg PLR For 3
each CA, the TID estimate and CDAJ,; are computed and £ 27

plotted against the observed performance metrics. Thétsesu¥ 20+
are presented in FigureE3[4, 5 &and 6. We process the reyultsg 156
first ordering the CAs in aequencef increasing magnitude =
of each of the recorded performance metrics. Thereafter, W%
orient the CAs in increasing order of expected performance$ 5
as predicted by the two theoretical interference estimatio < 0
metrics. Now that we have the CA sequences based on both,
actual performance data and theoretical interferencmatds,

we compare the actual and theoretical CA sequences to Fig. 3: Observed Correlation of Avg Throughput with TID
determine thedegree of confidencé)oC) for the two CA
performance prediction approaches. DoC reflects the efficac__ 45
of the interference estimation metric in predicting witlglhni
confidence, how a particular CA scheme will perform whe
implemented in a given WMN.

To determine the DoC, we first ascertain #reor in sequence
(EIS) for each estimation metric. In an ordered sequence of 2 25}
CAs, atotal of'C, comparisons can be made between individ-;
ual CAs with respect to the magnitude of the metric in contextg
Considering the sequence of CAs determined by experimentg
metric values as reference, we ascertain how mamypar- g 10t
isonsare in error in the sequences based on theoretical me§
rics. An erroneous comparison signifies that the performancz
relationship predicted by the estimation metric is comtrar 0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17
the observed real-time performance. The sum of all erragieou CDAL g

comparisons in the CA sequence of an estimat?on metric is ,itﬁig. 4: Observed Correlation of Avg Throughput with CDAL:

EIS. Further, we compute the DoC of the estimation metric

through the relationDoC = (1 — (E1S/"C5)) x 100, where Performance evaluation of the theoretical interferende es

n is the number of CAs in the sequence. mation approaches, based on the observed results of the
From the illustrated results, the CA sequence in terms wtfo metrics is presented in Tallellll. CDAL,; consistently
increasing Avg Throughput can be determined d€EN- outperforms TID estimate in terms of reliability of CA per-
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formance prediction and its accuracy levels stay above 80%.
Another positive feature of CDAL; predication is that the

best performing CA.e, GSCA and the least efficient Cike.,

CENg, are rightly predicted to be the best and the worst CA,
respectively. TID estimates predict GSCA to be the bestchvhi

is substantiated by experimental results but wrongly ptedi [8]
BFSg to be the worst CA for the given grid WMN, although

VI. CONCLUSIONS

The motive of our work was to engineer an interference
estimation algorithm which assures greater adherencetualac
results and offers a reliable metric to assist in the task&f C
selection for a given WMN. The results have demonstrated
that CDAL.,s; has met these objectives and is decidedly a
better metric than TID at a lesser computational overhead.
The efficacy of CDAL,,; has also strengthened the proposed
qualitative characterization of interference endemic iMMé

as its algorithmic design is motivated by this charact¢iora

VII.

We intend to devise a metric that also takes into account
the spatial characteristics of interference in addition to the

statistical aspects. We also plan to perform a quantitative
analysis of these estimation metrics.

FUTURE WORK
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