

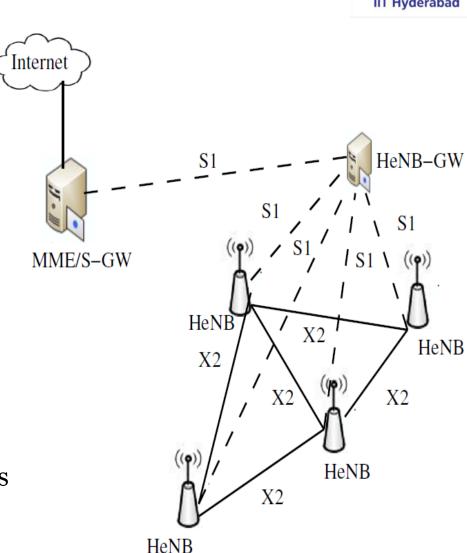
OPTIMAL FEMTO PLACEMENT IN ENTERPRISE BUILDING

Milind Tahalani, Vanlin Sathya, Ramaraju Chaganti, Suhas U S, and Bheemarjuna Reddy Tamma

Networked Wireless Systems Laboratory

Dept. of Computer Science and Engineering

Indian Institute of Technology (IIT) Hyderabad, India


Background

LTE data rates: 100 Mbps downlink and 75 Mbps in uplink

➤ In future video traffic will contribute to 70% of total cellular traffic

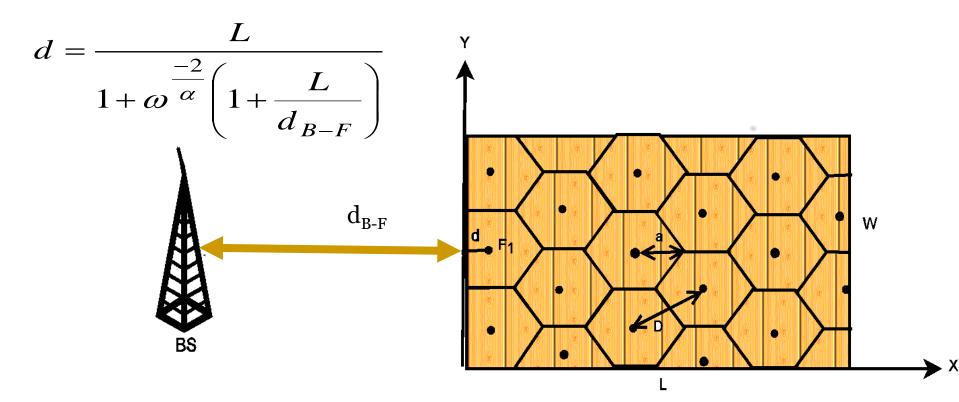
- ➤ 80% of traffic from Indoors
- Small cells can address growing Indoor traffic demands
- ➤ End-users install small cell base stations (a.k.a. Femto cell nodes) inside their homes/offices
- A home Femto can serve up to 7 end-users whereas enterprise Femto can serve up to 40 end-users
- A win-win situation for both telecom operator and end-users!

<u>Issues and Challenges</u>

Femto cell deployments face the following issues and challenges in commercial buildings:

- Cross-tier and Co-tier Interference among Macros and Femtos
- Unnecessary handovers inside the building
- Energy efficiency from UE point of view
- Optimal Placement of Femtos inside building

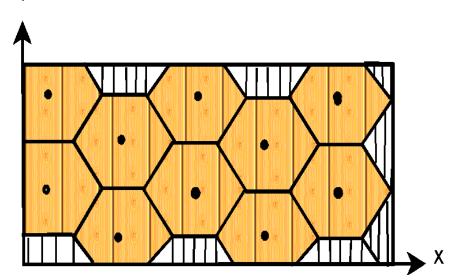
Related Work


□ Optimal Femto placement in an enterprise building does not consider the effect of macro base station interference on Femtos

- ☐ Proposed an automatic prediction technique for Femtos in heterogeneous network
- ☐ Queries like how many Femtos required and where exactly to place these Femtos are not addressed

Assumptions

We assume that every Femto can service a Hexagonal Coverage Area (HCA). Within a given HCA of a Femto, SINR decreases along the distance \mathbf{r} . At some particular distance ($\mathbf{r} = \mathbf{a}$), SINR reaches its threshold min (γ_{min}), where \mathbf{a} is the maximum distance that can be covered by a Femto.

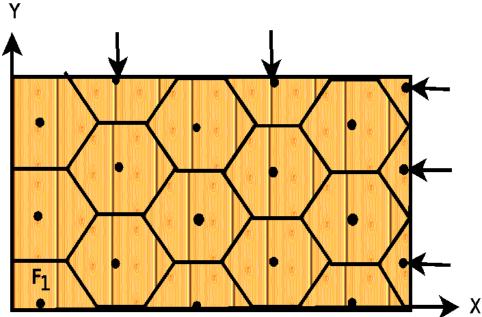


Assumptions



- Inter-distance relationship between femtos:
 - $\sqrt{3}a \le D \le 2a$ where a is hexagonal radius for a given SINR threshold. D can be relaxed to 2a to assure min SINR value for all UEs.
- The area of the building is L X W and area of each HCA is 2.6a²
 The minimum number of Femtos required is the lower bound of the relation given below.

$$\left\lceil \frac{LW}{2.6a^2} \right\rceil$$



Continue...

Required number of Femtos for a given length and width of the building depends on

$$\left\lceil \frac{LW}{2.6a^2} \right\rceil \le M \le \left\lceil \frac{LW}{2.6a^2} \right\rceil + \left\lceil \frac{L}{3a} \right\rceil + \left\lceil \frac{W}{\sqrt{3}a} \right\rceil$$

- □ Voids are created for every 3a distance along the length, and at every $\sqrt{3}a$ distance along the width. Hence, a maximum of L/3a Femtos are required along length and $W/\sqrt{3}a$ Femtos are required along width.
- □This value defines the upper bound of the relation.

Proposed Heuristic Placement Algorithm

8

- Input 1: γ_{\min} (SINR-Threshold)
- Input 2: L,W (Building Dimensions)

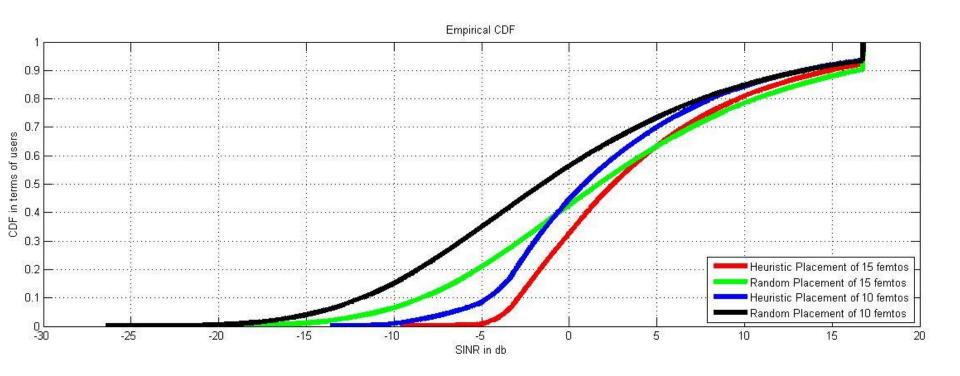
Step 1: Obtain a (hexagonal radius) for given γ_{min} using

$$\gamma(r) = \log_{10} P_f - L_x - 10\alpha \log_{10} \frac{r}{x} - \log_{10} P_b$$

$$C = \min(\log_2 (1 + \gamma), 5.6)$$

Step 2: Obtain d to get X co-ordinates of the first femto by

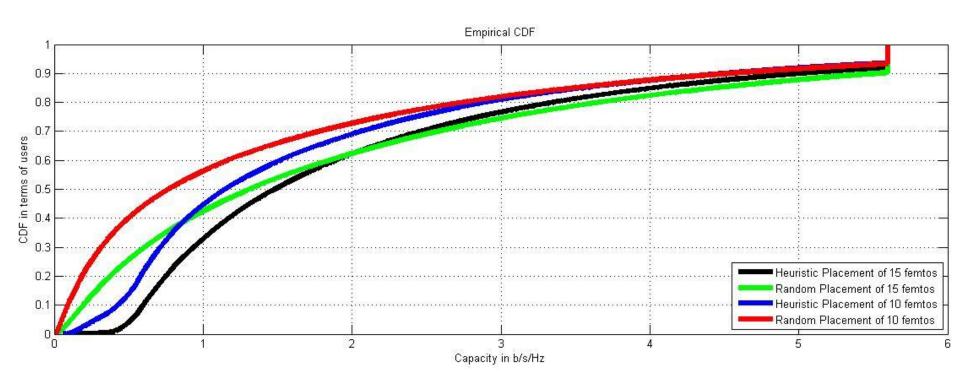
$$d = \frac{L}{1 + \omega^{\frac{-2}{\alpha}} \left(1 + \frac{L}{d_{B-F}} \right)}$$


Step 3: Fix Y co-ordinates of the first Femto and the total number of Femto (M) using equation

$$\left\lceil \frac{LW}{2.6a^2} \right\rceil \le M \le \left\lceil \frac{LW}{2.6a^2} \right\rceil + \left\lceil \frac{L}{3a} \right\rceil + \left\lceil \frac{W}{\sqrt{3}a} \right\rceil$$

Step 4: Plot HCA for all Femtos by extending first Fetmo HCA.

Performance Results



❖ Our proposed scheme offers 10% improvement in SINR when compare to random placement of Femtos.

Performance Results

Conclusion and Future Directions

□ Our proposed algorithm ensures minimum number of Femtos and maintains a threshold SINR to all indoor UEs

- □ Considering interference between Femtos inside the building?
- □ Considering the placement of Femtos inside the building depending on UE occupant probability?
- □ The attenuation factor due to inner walls?

Acknowledgments

- This work was funded by the Deity, Govt. of India (Grant No. 13(6)/2010CC&BT)
- IIT Hyderabad

References

- J. Liu, T. Kou, Q. Chen, and H. D. Sherali, "Femtocell base stationdeployment in commercial buildings: A global optimization approach," Selected Areas in Communications, IEEE Journal on, vol. 30, pp. 652–663, April 2012.
- W. Guo and S. Wang, "Interference-aware self-deploying femto-cell," Wireless Communication Letters, IEEE Journal on, pp. 609–612, December 2012.
- W. Guo, S. Wang, X. Chu, J. Zhang, J. Chen, and H. Song, "Automated small-cell deployment for heterogeneous cellular networks," Communications Magazine, IEEE, vol. 51, pp. 46–53, May 2013.

Feedback?

milindtahalani@iitkgp.ac.in