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Abstract—The advancements in wireless mesh networks in a WMN.
(WMN), and the surge in multi-radio multi-channel (MRMC)
WMN deployments have spawned a multitude of network per- [I. MOTIVATION AND RELATED RESEARCHWORK

formance issues. These issues are intricately linked to ttelverse . - - . . .
impact of endemic interference. Thus, interference mitigéon is Estimation of interference, its alignment and cancelfatio

a primary design objective in WMNS. Interference alleviation is  are well known NF_’-Hard problems [5]-. Numerous refsearch
often effected through efficient channel allocation (CA) seemes endeavors have tried to address the interference alignment
which fully utilize the potential of MRMC environment and  and cancellation at the physical layerg, in [6], authors

also restrain the detrimental impact of interference. Howeer, employ thesoft interference cancellatiolechnique. Impact of

numerous CA schemes have been proposed in research literagu . . . )
and there is a lack of CA performance prediction techniques interference on multi-hop wireless networks has also begen r

which could assist in choosing a suitable CA for a given WMN. 1 orously studied, maximum achi(_avab1etwork capacitypeing
this work, we propose a reliable interference estimation ad CA  the primary focus of these studies. In the landmark work [7],

performance prediction approach. We demonstrate its efficay by —authors demonstrated that in a wireless network consisfing
substantiating the CA performance predictions for a given WIN - ranqomly placed identical nodes, where each node is commu-
with experimental data obtained through rigorous simulatonson . . . . .
an ns-3 802.11g environment. nicating with another, the maximum achleyable throughpeut p
node is©(1/+/nlogn). In [8], authors estimate the network
capacity of an arbitrary wireless network by employing a
Multi-radio multi-channel wireless mesh networkgealisticsignal to interference plus noise rati®INR) model
(MRMC WMNSs) are expected to significantly reduce th&o account for the interference. Authors in [9] assess thgath
dependence on wired network infrastructure owing to tha interference in multi-hop mesh networks by proposing an
availability of low-cost commodity IEEE 802.11 hardwareypper bound on the achievable network capacity, under the
ease of scalability, and flexibility in deployment. MRMCconstraints of specific physical location of wireless noged
WMNSs offer reliable connectivity by leveraging the inherena particular traffic load. The concept afterference degree
redundancy in the underlying mesh topology frameworklD) is often used in solutions to the resource allocatiod[1
This is facilitated by multiple-hop transmissions whichage scheduling [11], and CA problems [12], with the intertwined
the data traffic seamlessly between source-destinatiors paibjectives of minimizing the prevalent interference and op
where a direct communication can not be established [tjnizing the WMN performance. ID of a wireless link in a
However, the broadcast nature of wireless transmissionsVidvIN denotes the number of links in its close proximity which
synonymous withlink conflicts spawned by WMN radios can potentially interfere with ite., disrupt a transmission on
which are located within each other’s interference randke given link. Total interference degree (TID) of a WMN is
and are concurrently active on an identical channel. Tlobdtained by halving the sum of ID of all links in the WMN.
lucrative features of MRMC WMNwiz., enhanced capacity, In our previous work [13], we highlight that TID is only an
seamless connectivity, and reduced latency are diminishagproximate measure of the intensity of interference btiano
by the adverse impact of interferenc€onflict graphs dependable CA performance prediction metric. Further4j,[1
(CGs) are invariably used to represent these interferenwe propose a fresh characterization of interference patirig
complexities in a WMN. A CG models the wireless linkshree dimensions, namelgtatistical, spatial and temporal
in a WMN as vertices and edges between these vertidosthe interference prevalent in wireless networks. Based o
represent potential link conflicts [2]. Interference aidgion this characterization, a statistic@hannel Distribution Across
in WMNs is primarily accomplished through an efficientinks(CDAL) algorithm is suggested which identifies the link-
channel assignment (CA) to the radios. Thus, the intensitpunt for each channek., the number of links in the wireless
of interference affecting a WMN is the characteristic of theetwork that have been allocated that particular chanmel. |
implemented CA scheme, as it is responsible for reigning then computes a statistical metric CDAL;, which is a
the endemic interference. However, the CA problem is aneasure of equitable distribution of channels across eseel
NP-Hard problem [3] and several CA schemes have belnks. Further, CDAL,; is demonstrated to be a more reliable
proposed in literature [4] which employ numerous concepéstimation metric than TID, at a lesser computational cost.
and heuristic approaches to mitigate the impact of interfee Thus, apart from TID estimate and CDAJ; there is

I. INTRODUCTION
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an absence of alternate metrics in research literatureghwhtransmit over non-overlapping channels. In sharp contrast
can be employed as well founded theoretical benchmai®sy leads to a high interference scenario where adjacent
for comparison and prediction of CA performance. In thiknks (AB & BC) and (CD & DE) operate over identical
study, we further bridge that gap by using the interferenchannels and cause link conflicts. The CDAL algorithm is
characterization model of [14] to engineespatio-statistical oblivious to these spatial characteristics and assigngvibe
interference estimation and CA predication scheme. CA schemes the same CDAL;. This causes an erroneous
prediction and comparison of CA performance, which renders
CDAL estimate less accurate. However, it forms the theceibti

Let G = (V,E) represent an arbitrary MRMC WMN foundation for a more efficient estimation technique whiah w
comprising ofrn. nodes, wheré” denotes the set of all nodespropose next.

andFE denotes the set of wireless links in the WMN. Each node

¢ is equipped with a random number of identical radi®s Algorithm 1 Cumulative X-Link-Set Weight

and is assigned a list of channeél; from the set of available \\out. & — (v, B), Ri(i e V), CA = {(R;,CS),i e V},
channel<’h. A reliable theoretical interference estimate needs g — (1 2, a7}

to be devised to predict with high confidence, the efficient CA  \otations: ¢ « WMN Graph, R; « Radio-Set,

schemes that ought to be selected@from the available set CS « Available Channel Set;'A + Channel Assignment
of CA schemes. Output: CX LSy

IlIl. PROBLEM DEFINITION

IV. INTERFERENCEESTIMATION & CA PERFORMANCE

PREDICTION 1: for i € V do
DetermineCh; and Adj; {Ch; : Set of channels allo-

cated to the radios at noden G. Adj; : Set of nodes
adjacent to node in G}
end for
: for i € V do
for j € Adj; do
LnSet < InsertLn(i,j). {LnSet : Set of all possible
A. Inadequacy of Statistical Interference Estimation wireless links in ofG.}
ComChi; < GetComCh(Ch;,Ch;,) {ComCh;;: Set
of common channels assigned to radiogo& j)}
LnChMap <+ InsertLnCh(LnChMap, 1, j, ComCh;;)
{LnChMap : Contains Link-Channel mapping.

The proposed algorithm adopts a comprehensive two dig'
mensionakpatio-statistical/iew of prevalent interference. The
spatial dimension concentrates on the link conflicts which are
spawned due to spatial proximity of radios, while gatistical
dimension is concerned with a proportional distribution of
channels across wireless links in a WMN.

w

A

Leveraging the statistical aspects of endemic interfezenc’
offers a sound estimation metric in CDAJ,;. However, there
is a lacuna in the CDAL algorithm that it accounts for only 8
a single dimension of interference. We now highlight thisg_

limitation of CDAL estimation. end for
10: end for
a) Channel Assignment X 11: Let Transmission Range : Inter ference Range = 1: X
12: SXLS + GetAll LinkSets(LnSet, X) {SXLS : Set of all
1 2 2 1 2 .
A2 2(+02(5  xinkses)
13: CXLSyw: < ProbCompWeight(SXLS, LnChMap, X).
b) Channel Assignment Y {Function ProbCompW eight() implements Algorithm 2
14: Output theCX LS.eight
1 /)Y 1 (c)Y 2 (p) =2
B2
Fig. 1: Limitation of CDAL estimation B. Spatio-Statistical Interference Estimation

Any theoretical interference estimation scheme can only

Figure 1 depicts channel allocations irbanode MRMC account for the spatio-statistical aspects of the threeedim
WMN under two CA schemes, CA and CA-. Two non- sional interference estimation problem. An intelligenatsp-
overlapping channell, 2) are available to the CA schemesstatistical scheme will not just factor in the spatial proity
The channel allocations to the link quart&iB, BC, CD, of links, but will also consider the distribution of availab
DE) under CA schemes CA and CA- are, (1, 2, 1, 2) channels among the radios, thereby offering an efficient CA
and (1, 1, 2, 2), respectively. For a smooth discourse, werformance estimation metric. The algorithm considess th
assume dransmission : Interferencange of 1:1.e, only the wireless links in a WMN and assignsset of linksa certain
transmissions over adjacent links interfere. It can beriefe weight which reflects its resilience to the adverse impact of
that the two channel allocations are statistically alile, interference. We call it th€umulative X-Link-Set Weiglur
link-counts of both the channels are identical under both CAX LS,,; algorithm and present it in Algorithm 1.
schemes. But the CA schemes differ in terms of spatial dis- We begin the discourse by explaining the texXabink-Set
tribution of links in the network. The spatial features of CA In a wireless network, the interference range of a radio
guarantee a minimal interference scenario, as adjacekd linhe distance over which the signal strength is potent enough



to interfere with another signal but unable to successfuldgorithm 2 Computation Of X-Link-Sets Weight

deliver data, far exceeds its transmission ramggethe distance Input: SXLS, LnChMap, X

upto which the signal strength of a transmission guarantees SXLS : Set of all X-link-Sets,X : Interference Range,
a successful data delivery at a receiving radio. The ratio LnChMap : Set containing Link-Channel mapping.
of Transmission Range : Interference Ran@el) in most Output: CXLS,;

wireless networks usually lies between 1:2 to 1:4. In the
proposed algorithm a T:I of 1:X is considered, where X iS1: CX LS. + 0

a positive integer. The factoK has a great significance in 2: for XLS € SXLS do

determining the detrimental effect of interference on &.lin 3:  XLS,; + 0

For example, in Figure 1 the channel allocation of £A 4. Let (Lni,Lns,...,Lnx) € XLS

is optimal for a T:I of 1:1, but for 1:2 both CA and 5. Let Chy,Chs,...Chx be the set of channels mapped
CAy experience the same number of link conflicts. Ths to the corresponding link&n,, Lns, ..., Lnx.

determines thempact radiugIR) of link conflicts, and it ought 6:  Assign channels to alin; from the channel-set'h;
to be taken into consideration while designing an interfeee  7:  TempX LS. + 0
estimation algorithm. The CXLS§ algorithm accounts for the 8  count < 0
impact radiusX by considering a set ok’ consecutive links 9:  for all Equally Probablecombinations of channel assign-
named theX-Link-Setor X LS as the fundamental entity for ments inXLS do
interference estimation. 10: if all X links are assigned identical channeisn
The CXLS,; algorithm begins by determining the set of11: TempX LSyt < 0
channels assigned to the radios of each node and the adjacerx else if X — 1 links are assigned identical channels,
list of each node. Next, all wireless links in the WMN are link is assigned an orthogonal chanmien

determined on the basis of transmission raingeadjacency of 13: TempX LSyt + 1
nodes in the graphical representation of the WMN. Furttoer, f :
each link, the algorithm finds the set of common channels that.

. . . ! : else ifall X links are assigned non-overlapping chan-
are assigned to radios of the adjacent nodes which share that 9 Pping

. . : ; nelsthen
particular link. The links are stored in a data structurdechl __
. . L : TempX LSyt <+ X
LnSet while the channel set associated to the link is mapped. end if

to it in LnChM ap. Further, a set of X-Link-Sets &# X .S, is
determined by the functiotfet All LinkSets. SXLS serves
as a sample space of fundamental blocks X .S, and the
final step entails processing them to generate an intedere
estimation metric. To each element of this sample space
to every X LS, we assign aweight which is a measure of
its quality. A higher weight signifies a diminished impact o
interference in theX LS, whereas a low weight implies that
the X LS is severely degraded by interference. weight. This scenario defines a maximal interference sa@nar
The technique of weight assignment appeals to the spaiial, every link within the XLS interferes with every other link
characteristics of interference and is described in Athati2  as the impact radius of spans the entir& LS. Further, if (X-
which is implemented in functio®robCompWeight. From 1) links are assigned conflicting channels and 1 link operate
the SXLS, individual XLSs are selected and processedn a non-conflicting channel, the weight assigned toXteS
iteratively. An X LS is further split up into itsX consecutive g 1. For, (X-2) links operating on overlapping channels and 2
constituent links,Ln; wherei € (1...X). For eachLn;, the |inks on non-overlapping channels, the weight assigned is 2
set of channel€’'h; associated to it are retrieved. Next, folFinally, if all the X links are assigned orthogonal channels,
eachX LS all possible combinations of channel assignmenighich is the minimal interference scenario, a maximum weigh
to Ln; from their respective’'h; are generated. The motivat-of X is assigned to theX LS instance. After all of theX LS
ing principle for considering all possible channel alldeat weights (XLS,;) are computed, the algorithm sums them
variations for anX LS is the same as probabilistic selectionogether to generate the final metric for the CA which is the
of channels in the CDAL algorithm. The channel selectiogXLs,,,. It is noteworthy that a link may be a part of multiple
for a link being a temporal characteristic, we account f@ thx 1,Ss, and will contribute to the weight assignment in each
dynamism and randomness in the system by considering all 81 of them. Hence, the algorithm takes into account all
variations as equally probable. Thus, for every channetal interference scenarios that may arise within a WMN. Further
tion pattern, the algorithm assigns a weight based on thé@spagenerating a sample space consistingkdf.S, assigning each
proximity of links. The final weight for atX .S is the average sample a weight, and deriving the metric by a sum of the

of all of its variations. Within anX LS channel allocation weights of entire sample space are the statistical feaifres
instance, if all of the X links are assigned an identical ¢ct&n the CXLS,; algorithm.

the weight assigned to th& LS is 0 which is the minimum

XLSwt < XLSwt + TemeLSwt
18: count < count + 1
19:  end for
0:  XLSwt < XLSyt/count
21: CXLSwt <+ CXLSyt + XLSwt
f22: end for
23: ReturnCX LS.




C. Time Complexity of CXLs Algorithm the following number of concurrent flows which are activated

For an arbitrary MRMC WMN graphG = (V,E), ;imultaneq_uslygin th_?5 no%e gri.d: 5
comprising ofn nodes andm identical radios installed on @ 5 (i i) 1 v 12

every node, the upper-bound on algorithmic complexity ef th TABLE I ns-3 Simulation Parameters
CXLS,,; algorithm can be determined to be 3(?). The

SX LS computation incurs an algorithmic cost of &} and | Parameter | Value

the cardinality of the sete, the number ofXLSs in the Grid Size 555

set has an upper bound of ©3}. Further, for eachX LS No. of IEEE 802.11g Radios/Node 2

the weight is computed by the functid?vobCompW eight() Ra'nge of Radio.s 550 Mis

by processing each individual link in th& LS. This step is
the most computationally intensive in the algorithm and &a
worst-case complexity of @fm?).

Available Orthogonal Channels | 3 in 2.4 GHz
Maximum 802.11g PHY Datarate 54 Mbps

In comparison, TID and CDAL.: estimations have a '\D/Iata_ﬁle S'ZSe S7e (TCP 1OKI\BAB
worst-case algorithmic complexity of @m?®) and O@>m?), aximum Segment Size (TCP)
Packet Size (UDP) 1 KB

respectively [14]. Since in any WMN deployment, number af _
nodes far exceeds the number of radios installed on a nad¥AC Fragmentation Threshold | 2200 Bytes

i.e,n>>m, CXLS,, estimation requires more computationgl RTS/CTS Enabled
resources than the other two estimation schemes. Howaeer,|t Routing Protocol OLSR _
results will demonstrate that this slight increase in ceexjpy | L0SS Model Range Propagation
is a small cost to pay for significantly improved accuradyRate Control Constant Rate
levels.

V. SIMULATIONS, RESULTS AND ANALYSIS C. Selection of CA Schemes

We now subject the proposed interference estimation al- e implement a heterogeneous mix of well-known CA
gorithm to prove its efficacy in prediction of CA performancéChemeS"Z-’ a centralized breadth first traversal approach (BF-

in WMNS. SCA) [2], a static maximum clique based algorithm (CLICA)
. ) [17], a maximum independent set based scheme (MISCA)
A. Simulation Parameters [18] and a centralized static CA scheme (CCA) [19]. We also

We perform exhaustive simulations in ns-3 [15] to recortinplement tworadio co-location awareCA algorithmsviz,
the performance of CAs in&x 5 grid WMN. A WMN of grid ~ an optimized independent set based CA scheme (OISCA) and
layout is ideal for evaluating CA efficiency as it outperfarma spatio-statistically designed, elevated interfererseezmit-
random WMN deployments in terms of metrics such dgation approach (EIZMCA) [20]. Each of these CA schemes
access-tier coverage area, back-haul connectivity, dagrin  is implemented using two broad based multi-radio multi-
channel allocation, and mesh capacity [16]. The simulatigannel conflict graph models (MMCG., the conventional
parameters are presented in Table I. Each multi-hop trafiMCG (C-MMCG) and the enhanced MMCG (E-MMCG)
flow transmits a datafile from the source to the destinatiol:3]. C-MMCG is the traditional way of representing link
TCP and UDP are the underlying transport layer protocot@nflicts, and does not account for radio co-location inter-
which are implemented through the inbuilt ns-3 models dérence (RCI) prevalent in a wireless network. E-MMCG is
BulkSendApplicatiorand UdpClientServer TCP simulations @ marked improvement over its conventional counterpart and
offer theaggregate network throughpuiile UDP simulations adequately represents RCI interference scenarios inriks i
determine thepacket loss ratiand themean delayWe equip conflict representation of the WMN. The use of E-MMCG
each node in the grid WMN witl identical radios and CA leads to reduced interference levels and improved WMN

schemes hav@ orthogonal channels at their disposal. performance [13], which is also reflected in the results we
present in this study.

Thus, for all of the above mentioned 6 CA schemes we
Multi-hop data flows are an intrinsic feature of WMNshave two versions, one for each MMCG model, resulting in
To gauge the detrimental impact of the endemic interferent2 CAs. In addition, we also implement a grid specific CA
we design four high traffic test-cases by activating mudtiplscheme (GSCA) for the grid WMN through a crude brute-
concurrent multi-hop flows. Test scenarios in the grid WMNbrce approach which permutes through all possible channel
include a combination oft-hop flowsfrom the first node allocations in the grid to determine a CA with the minimal TID
of a row or column to the last node of that particular rovestimate. It serves as a reference for performance evatuati
or column, and8-hop flowswhich are established betweerthe CAs. Finally, we have a total of 13 implementable channel
the diagonally opposite nodes placed at the corners of takocations from the 7 CA algorithms. In [14], the evaluago
grid. From various combinations of these two categories of CDAL ., estimates were done on a CA sample set of 9
multi-hop flows, four test scenarios are designed which a@As and in this work the sample set is enlarged to ensure
subjected to both TCP and UDP simulations. They comprise@fmore comprehensive evaluation. Further, the objecti is

B. Test Scenarios
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Fig. 3: Observed correlation of theoretical estimates &olighput

guantitative assessment of the CA performances, and nograce. Further, with increase in the adverse impact of ieterf
gualitative analysis of their algorithmic design. Thuswitl ence, loss of data packets and end to end latency in packet
suffice to present the results of the simulation exercise atrdnsmission will increase as well. Thus, a reliable thecae

use them as a benchmark to determine the efficiency of tinerference estimate must exhibit a similar pattern when
prediction algorithms. To facilitate a smooth referencing plotted against the observed network performance metrics.
will denote a C-MMCG CA ag’' A¢ and its E-MMCG variant From Figures 3, 4, & 5, it can be discerned that TID does not

asCAg. conform to expected correlation and has a haphazard gtadien
when plotted against network metrics. CDRAL displays a
Throughput —— higher adherence to the expected pattern than TID. GXLS
PLR/MD = = estimates exhibit a great similarity to the expected cati@h

plot gradients. Since all three metrics do not account for
the temporal characteristics of wireless communication, a
deviation from observed patterns is inevitable. Thus, CXLS
offers the most reliable interference estimates amonghitest
metrics which is visible from the gradients of its plots agti
the three network performance metrics. We now process and
analyze the results to derive the accuracy of each of the thre
estimation metrics.
For every recorded performance metric, we first order the
Interference CAs in asequenceof increasing performance. In a similar
Fig. 2: Expected correlation of performance metrics witeiference fashion we order the CAs in the increasing order of ex-
pected performance, as predicted by the three interference
estimation metrics. For both TID and CDAL;, a high
estimate implies high interference in the WMN and thereby,
An exhaustive set of simulations were run for the tesk dismal CA performance. In contrast, higher the value of
cases described above, and the values of the three perfoem@XLSwt, better is the expected performance of the Ca,
metrics were recorded. For each CA, we compute the averagepected CA Performance s CX LS,;). Thus, the CA
of the recorded network metric values for all the test-cdseSsequence in the increasing order of expected performance
derive, theaverage aggregate network throughgfit Mbps), will be arrived at by orienting CAs in decreasing order of
average packet loss ratitas a%), andaverage mean delay estimation metric values for both, TID and CDAL;, and
(in useconds). For ease of reference, we henceforth denpf€ncreasing order of estimation metric values for CXkS
them asThroughput PLR and MD, respectively. For a better Next, we compare CA sequences based on experimental data
representation in result illustrations the CAs are labeled \yith cA sequences derived from theoretical estimates, to
BFSCA (B), MISCA (M), CCA (C), CLICA (CQ), OISCA determine theerror in sequence(EIS) of each prediction
(O), EIZMCA (E) and GSCA (GS). The results are presentgfletric. Let us consider CAs which are ordered in a sequence
in Figures 3, 4, & 5, through which we demonstrate thgased on the values of a prediction metric. A total"6#
observed correlation between theoretical estimates am*'accomparisonsexist between individual CAs in the sequence.
performance metrics. These pairwise comparisons of expected CA performances
It is necessary to understand the expected correlation fve to be verified against experimental data, by consigerin
network performance metrics with the prevalent interfegen the sequence of CAs based on the recorded network metric

As depicted in Figure 2, the aggregate capacity of a wireleggiyes as the reference. We determine the total number of
network will deteriorate with rise in the intensity of inter-

Performance Metric

D. Results and Analysis
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comparisons that aii@ error in the CA sequences of theoret-and 8, respectively. EIS for all the theoretical estimates with
ical metrics. A comparison in error implies that the expdctaespect to the three observed network metrics are depioted i
performance relationship between two CAs as predicted the Figure 6.

the estimation metric, is contrary to that observed in dctua
implementation results. EIS for a particular CA performanc

24

TD  &=x
prediction metric is the sum of all erroneous comparisons in 22 COALcost mm—
20 ot B

its CA sequence. Thus, EIS is a measure of fallacy in the 15
predictions of an estimation metric. Next, we determine theg 4
degree of confidencéDoC ) which represents the level of 5.,
accuracy that an interference estimation scheme exhibits i@ 12
its prediction of the performance of a CA. The DoC valuey 10
for a theoretical estimate is computed through the exprassi s 8
DoC = (1-(EI1S/"C5))x 100, wheren is the number of CAs i
in the sequence. We elucidate the above procedure through ,
an example. Let us determine the CA sequence in terms of
increasing Throughput, which iSCCA- < CLICA: < CCAg
< CLICAg < BFSCA: < BFSCA; < MISCA- < OISCA-
< MISCA; < EIZMCA: < OISCA; < EIZMCAg < GSCA)
This is the reference ordering of CAs in which CCA is the Finally, we compute the DoC which is the number of
least efficient and GSCA the best performer in the CA sampigirmative predictions as a percentage of total number of
set, in terms of observed Throughput. Against this benckmaajrwise comparisons that are possible in the CA sequence
we compare the CA sequence spawned by CxXLSvhich (130,) DoC for the three estimation schemes are presented in
is : (CCAc < CCAg < CLICA: < BFSCA: < CLICAE < Taple II.

BFSCA; < MISCA: < OISCAc < EIZMCA < MISCA; It can be inferred that CXLS registers lower EIS than

< EIZMCA; < OISCA; < GSCA) We compare the actualpoth, TID and CDAL.,, in terms of Throughput, PLR and
pairwise CA relationships with those predicted by CXL30 M. The EIS is halved in CXLS, estimation in comparison
compute an EIS ofl with respect to Throughput. Likewise,t CDAL,,.;, while it is reduced to almost one fourth when
the EIS for TID and CDAL.,; in terms of Throughputared  compared to TID estimates. A similar trend can be observed

PLR MD

Network Performance Parameter

Throughb

Fig. 6: EIS values of CA performance prediction metrics



TABLE IlI: Performance Evaluation Of Estimation Metrics

Performance Degree of Confidencg%) [1]
Metric TID CDAL (o5t | CXLS,¢
Throughput 75.64 89.74 94.87 [2]
PLR 75.64 84.61 94.87
MD 76.92 88.46 91.02 3]

in the DoC values as well. TID estimates fare worse than
both, CDAL.,s; and CXLS,;, as a prediction metric with ]
accuracy levels always below 80%. CDAL; exhibits an
average performance with DoC values between 80% and 90%.
CXLS,; is unarguably the most dependable CA performanc@
prediction metric of the three, as its measure of religbibt
always greater than 90%.

Further, let us qualitatively assess the prediction paster [©!
of the three estimates. It is discernible that CXJ.®xplicitly
distinguishes between CAs that will perform well in a WMN
and those that will noeg, CXLS,; estimates project CAs (7]
OISCAg, EIZMCAE & GSCA as high-performance CAs, the
CAs BFSCAs MISCA: & OISCA(¢ as average performance [8]
CAs, and the CAs CCA & CLICA as low-performance
CAs. These performance predictions are validated by thg,
experimental results. In contrast, TID estimates place the
CAs BFSCA; & CLICA ¢ at the bottom of the performance 10]
spectrum, and CCA as an average-performing CA. Both 01[
the predictions are not in adherence to the actual expetahen
data. CDAL..; estimates are more accurate than TID, btf 1]
they fail to compete with CXLS; as they overlook the spatial
aspects of interference alleviation and do not consider the
proximity of links that might interfere. Further, all therée 12]
estimates rightly predict GSCA to be the most efficient CA ih
the sample set, however only CX|,5and CDAL.,s; predict
CCA(¢ to exhibit the poorest performance.

VI. CONCLUSIONS

[13]

Since the problem of interference estimation is NP-hard,
the role of a theoretical prediction estimate is limited xbibit  [14]
a maximal conformance to the actual recorded behavior of a
CA when implemented in a WMN. In this context, CXLS [15]
proves to be a reliable CA prediction metric with an adheeenc
of over 91% to actual results, in a fairly extensive sampte S86
of 13 CAs. It does incur a slightly higher computational cost
than both, TID estimate and CDAl,;, but the overhead of
increased algorithmic complexity is adequately compefmisat[17
by the increase in accuracy levels. Thus, CxL8utperforms
both TID estimate and CDAl,,; as a reliable CA performance
prediction metric, which it owes to its spatio-statistidaisign
that ensures a reduced EIS and thus, an enhanced DoC.

VIl. FUTURE WORK

Both CDAL,,s; and CXLS,; are metrics that offer pre-
dictions for the whole CA and do not offer an estimate of
individual link quality. For a quantitative assessmentchsu [20]
as theoretical upper-bounds of network performance ngetric
eg, Throughput, a link quality estimate is necessary. Thus we
intend to take up this problem and devise a prediction eséima
based on the individual link quality.

18]

[19]
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