Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

Srikant Manas Kala, Pavan Kumar Reddy, Ranadheer M, Bheemarjuna Reddy Tamma

CSE Department, Indian Institute Of Technology, Hyderabad

ICACCI 2015

(日) (四) (코) (코) (코) (코)

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

 Wirless Mesh Networks (WMNs)
 A Promising Technology
 Conclusions
 <t

- Potential for widespread application.
 - Low-cost availability of IEEE 802.11 hardware.
 - Ease of scalability and reconfigurability.
 - Tremendous increase in data communication rates guaranteed by IEEE 802.11 and IEEE 802.16 standards.
- Wireless technologies that benefit from WMN deployments.
 - IEEE 802.11 WLANs, Wireless Metropolitan Area Networks (WMANs), Cellular mobile systems including LTE-Advanced etc.

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA 000000	Conclusions
WMN N	Aodel Considere	ed			

- A single Gateway WMN.
- Mesh-routers and mesh-clients.
- Multi-Radio Multi-Channel (MRMC) Deployment.
- Only inter mesh-router communication issues considered.

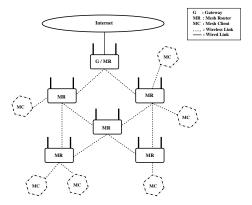
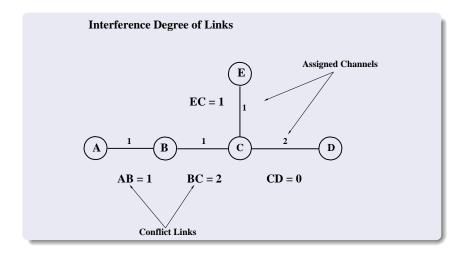


Figure: A Simplistic WMN Architecture

Let G = (V, E) represent an arbitrary WMN. $V \rightarrow$ Set of nodes in G, $E \rightarrow$ Set of wireless links. Let $i \in V$, $j \in V$, such that $(i, j) \in E$.

Conflict Links


∀(m,n) ∈ E, for which the transmitting range of the radio at node m or n, extends upto, or beyond node i or j, are the conflict links of link (i, j).

Interference Degree

• The Interference Degree of link (*i*, *j*), is the total number of links in E which are the conflict links of (*i*, *j*).

伺 ト イヨト イヨト

-∢ ⊒ →

3

Concent	ts and Termino	000 III			
Introduction ○00●0	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA 000000	Conclusions
Instance descentions	Luces of DCL MAANI-	DCA CA-			

ຣງ

Total Interference Degree or TID

- An approximate estimate of the interference prevalent in a WMN.
- Computed by halving the summation of the *Interference Degree* of all the links in *G*.

Conflict Graph or CG $(G_c = (V_c, E_c))$

- $\bullet~\mbox{Generated}$ from G=(V,E) where
 - $V_c = E$
 - $\forall (m,n) \in V_c$, $\{(i,j), (m,n)\} \in E_c \ iff \ (m,n)$ is a conflict link of (i,j) in G.
- Wireless communication links in the WMN become the vertices in the conflict graph.
- Any two of these vertices share an edge **iff** the corresponding wireless links in the WMN interfere.

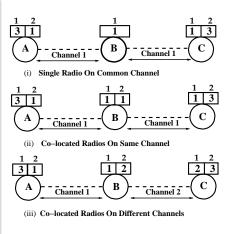
Concente	s and Termino				
Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA 000000	Conclusions

Multi Radio Multi Channel Conflict Graph (MMCG)

о.

- Conflict Graph for MRMC WMNs.
- Multiple radios / WMN Node.
- Several channels are available.
- Creation is complex.

Channel Assignment (CA) Scheme


- CA can be understood as, $C_i = CA(i, R_i)$, where
 - Each node i, has random number of identical radios R_i .
 - $C_i \Rightarrow$ List of channels assigned to R_i .

• Assumption : Number of available channels $> (R_i)_{max}$

Radio Co-location Scenarios

- Common Channel Scenarios
 - Fig. (i) \rightarrow No RCI
 - Single Radio Common Channel at *B* (SRCC).
 - Fig. (ii) \rightarrow RCI
 - Multiple Radios Common Channel at *B* (MRCC).
- Different Channel Scenarios
 - Fig. (iii) \rightarrow No RCI
 - Multiple Radios Different Channels at *B* (MRDC).

(日) (同) (三) (三)

3

8/30

Impact & Alleviation

- Spatially co-located radios cause RCI.
- Impact of RCI degrades network performance.
- Should be represented in MMCG.
- The Enhanced MMCG (E-MMCG) algorithm represents RCI while the Classical MMCG (C-MMCG) algorithm fails to do so.

Radio Co	-location Aware	Channe	Accionm	ents	
00000			000000	000000	
Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

Features

Features of Radio Co-location Aware Channel Assignments (RCA CAs)

- RCI Mitigation through Radio Co-location Optimization (RCO) function.
- Equitable distribution of channels among radios in a WMN.
- Topology preserving.

The Proposed RCA CAs

Two RCA CAs are proposed

- RCA Optimized Independent Set (OIS) CA .
- RCA Elevated Interference Zone Mitigation (EIZM) CA.

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA RCA EIZM CA Conclusions OCOCO RCA Optimized Independent Set CA Motivation

Factors Contributing To Idea Development

- Availability of exhaustive set of Results from Stage 1.
- Performance analysis of a dozen CAs.

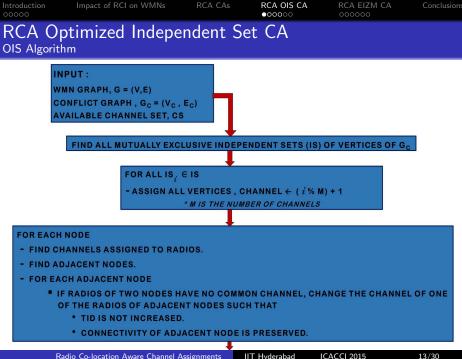
The Driving Ideas

• Notion of Statistical Evenness in Channel Allocation

- CA performance has a Statistical Dimension.
- Even distribution of channels across radios \rightarrow Improved CA performance.
- Emphasis on RCI Mitigation

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCA EIZM CA Conclusions OCOOCO Statistical Evenness in Channel Allocation Application & Validation

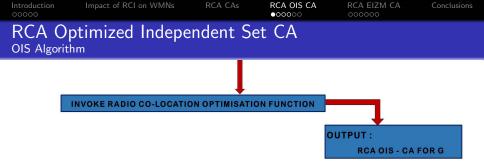
Idea Implementation

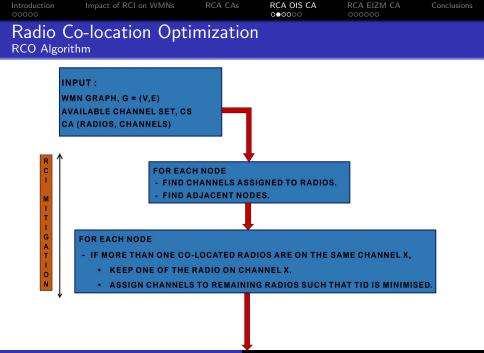

Concept of even distribution of channels across links is used in

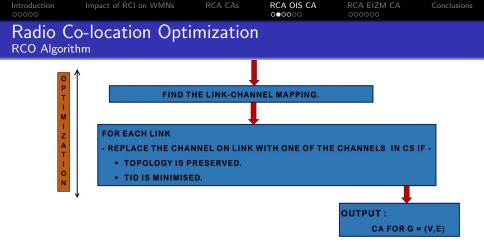
- Designing RCA OIS-CA.
- Interference Characterization & Estimation.

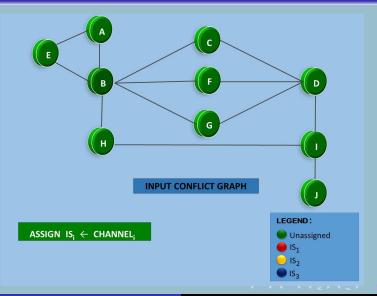
Idea Validation

Validation approach

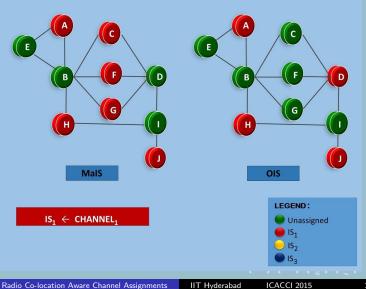

- Propose OIS-CA and implement it.
- Compare OIS-CA with MaIS-CA (Independent Set based).
 - Theoretically \rightarrow Toy Example.
 - Experimentally \rightarrow ns-3 Simulations.

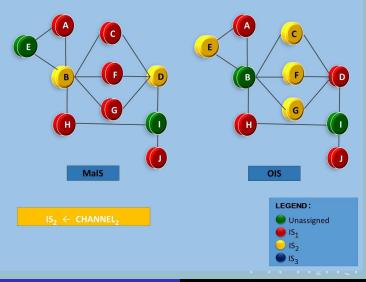



Radio Co-location Aware Channel Assignments

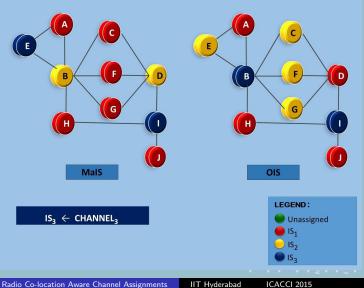

IIT Hvderabad

13/30




Radio Co-location Aware Channel Assignments IIT Hyderabad ICACCI 2015 15/30

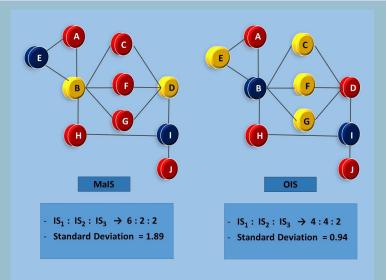
Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO Conclusions OCOCO CONCOCO CONCLUSION CONCLUS CONCLUSION


15/30

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO OCOCO OIS vs MalS : Independent Set Selection Independent Set 2

Radio Co-location Aware Channel Assignments IIT Hyderabad ICACCI 2015 15/30

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO OCOCO OIS vs MalS : Independent Set Selection Independent Set 3



15/30

 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

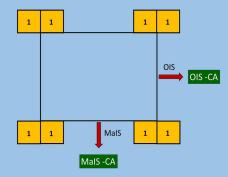
 OIS vs MalS : Independent Set Selection
 Conclusion
 Conclusion
 Conclusion
 Conclusion

Measuring Statistical Evenness

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
	MalS : Indepen		Selection		

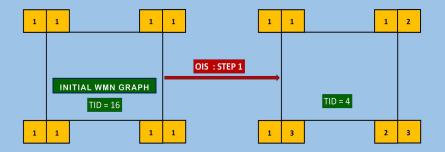
Rat	atio of Channel Distribution across Radios							
	Grid Size	Num of Radios	R _{C1} : R MalS	C_2 : \mathbf{R}_{C3}				
	5×5	50	1.00 : 1.63 : 1.94	1.00 : 1.06 : 1.06				
	6×6	72	1.00 : 1.33 : 1.66	1.00 : 1.09 : 1.33				
	7×7	98	1.00 : 1.56 : 1.69	1.00 : 1.00 : 1.16				
	8×8	128	1.00 : 1.48 : 1.64	1.00 : 1.00 : 1.28				
	9×9	162	1.00 : 1.58 : 1.57	1.08 : 1.00 : 1.29				

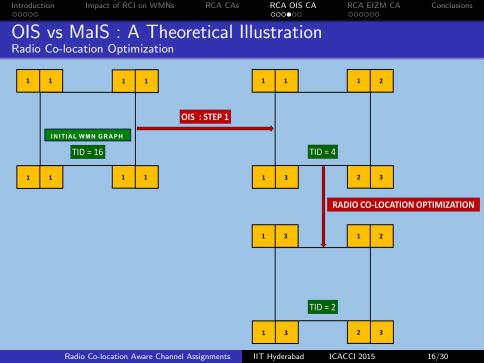
- 2 radios/node, 3 orthogonal channels $C_1, C_2 \& C_3$
- Statistical Evenness of a CA $\rightarrow R_{C1}$: R_{C2} : R_{C3} .
 - $R_{Ch} \rightarrow$ Number of radios operating on channel Ch
 - Ratio normalized by smallest value.
- MalS \rightarrow Skewed distribution of channels.

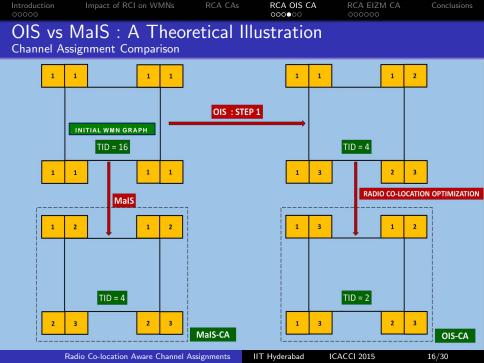

 $\texttt{STATISTICAL EVENNESS} \rightarrow OIS > MalS$

 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

 OIS vs MaIS : A Theoretical Illustration
 Sample WMN


INITIAL WMN GRAPH


- 4 NODES
- 2 RADIOS / NODE
- 3 CHANNELS AVAILABLE
- INITIALLY ALL NODES ON CHANNEL1



 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

 OOIS
 vs
 MalS : A Theoretical Illustration
 OIS Step 1
 Conclusions
 Conclusions

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○●○	RCA EIZM CA 000000	Conclusions
	ion Setup logies & CA Schemes				

WMN Topologies

- 5×5 grid WMN (GWMN).
- Random WMN (RWMN) of 50 nodes spread across an area of $1500m \times 1500m$.

CA Schemes Considered

- BFS-CA \rightarrow A Breadth First Search based CA.
- MalS-CA \rightarrow A Maximum Independent Set based CA.
- OIS-CA \rightarrow RCA Optimized Independent Set based CA.
- OIS-N-CA \rightarrow Non-RCA version of OIS.

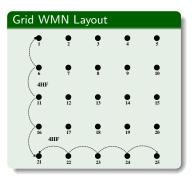
Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○●○	RCA EIZM CA 000000	Conclusions
	ion Setup Characteristics				

Flow Types

- Grid WMN.
 - 4-Hop Flows & 8-Hop Flows.
- Random WMN.
 - 3-Hop Flows to 10-Hop Flows.

Transport Layer Protocols

- TCP \rightarrow ns-3 BulkSendApplication.
- UDP \rightarrow ns-3 UdpClientServer.


Network Metrics Observed

- Network Aggregate Throughput (Throughput).
- Packet Loss Ratio (PLR).
- Mean Delay (MD).

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
Simulat	ion Setup				

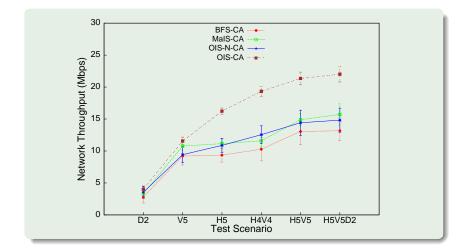
Grid WMN Test Cases

- **1** $D2 \rightarrow Two concurrent 8-Hop flows.$
- ② H5 → Five concurrent 4-Hop flows (Rows).
- H4V4 →Eight concurrent 4-Hop flows (Combinations).
- ③ H5V5 → Ten concurrent 4-Hop flows (H5 & V5).
- H5V5D2 \rightarrow Twelve concurrent flows. (D2, H5 & V5).

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○●○	RCA EIZM CA 000000	Conclusions
Simulati Test Scenari	on Setup				

Random WMN Test Cases

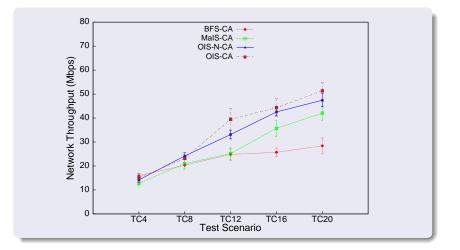
Test Cases \rightarrow Concurrent multi-hop flows of 3 to 10 hop counts.


- TC4 \rightarrow 4 concurrent multi-hop flows.
- **2** TC8 \rightarrow 8 concurrent multi-hop flows.
- TC12 \rightarrow 12 concurrent multi-hop flows.
- TC16 \rightarrow 16 concurrent multi-hop flows.
- **⑤** TC20 \rightarrow 20 concurrent multi-hop flows.

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○●○	RCA EIZM CA 000000	Conclusions
Simulation	ion Setup				

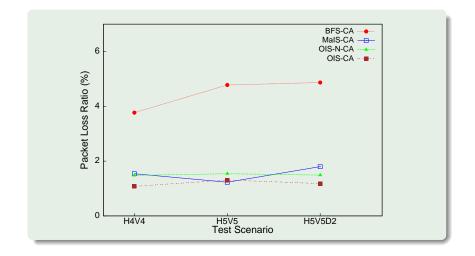
ns-3 Simulation Parameters

Parameter	Value
Radios/Node	GWMN: 2, RWMN: 3
Range Of Radios	250 mts
IEEE Standard	GWMN: 802.11g RWMN: 802.11n
Available Orthogonal Channels	GWMN: 3 (2.4 GHz) RWMN: 4 (5 GHz)
Transmitted File Size	GWMN: 10 MB RWMN: 1 MB
Maximum 802.11g/n Phy Datarate	54 Mbps
Maximum Segment Size (TCP)	1 KB
Packet Size (UDP)	GWMN: 1 KB RWMN: 512 Bytes
MAC Fragmentation Threshold	2200 Bytes
RTS/CTS	Enabled
Packet Interval (UDP)	50ms
Routing Protocol Used	OLSR
Loss Model	Range Propagation
Rate Control	Constant Rate


Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○○●	RCA EIZM CA 000000	Conclusions
OIS Per GWMN Th	rformance Evalı roughput	ation			

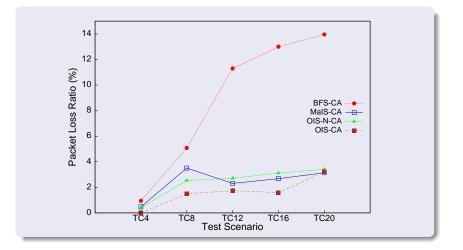
イロン イロン イヨン イヨン

æ


Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○○●	RCA EIZM CA 000000	Conclusions
OIS Per RWMN Th	rformance Evalu	ation			

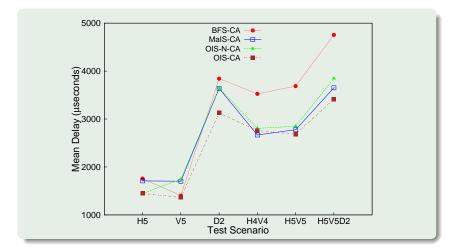
<ロ> <同> <同> < 回> < 回>

æ

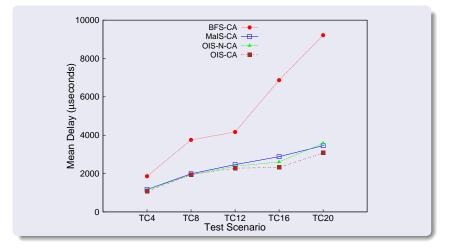

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○○●	RCA EIZM CA 000000	Conclusions
OIS Per PLR in GW	formance Evalu	ation			

・ロト ・回ト ・ヨト ・ヨト

2


Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○○●	RCA EIZM CA 000000	Conclusions
OIS Per PLR in RW	formance Evalu	ation			

イロン イロン イヨン イヨン


æ

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○○●	RCA EIZM CA 000000	Conclusions
OIS Per MD in GWI	formance Evalu	ation			

< ロ > < 回 > < 回 > < 回 > < 回 > .

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○○○○○●	RCA EIZM CA 000000	Conclusions
OIS Per MD in RWI	formance Evalu	ation			

・ロン ・回と ・ヨン ・ ヨン

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA RCA EIZM CA Conclusions RCA Elevated Interference Zone Mitigation CA Motivation

Factors Contributing To Idea Development

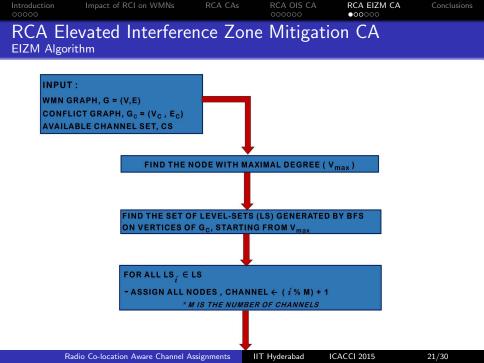
- Impact of interference varies within a wireless network.
- SINR levels at different locations differ.
- Fluctuating extreme SINR <_{WMNPerformance} Uniform average SINR.

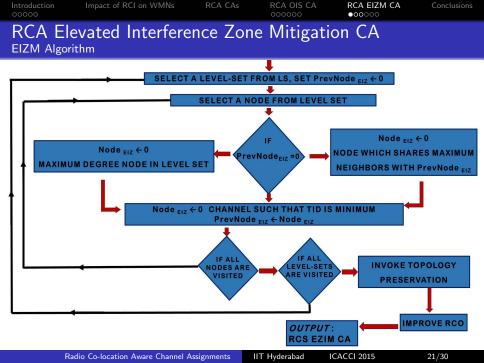
The Driving Idea

- \bullet Localized pockets of high interference \rightarrow Performance bottlenecks.
 - Named \rightarrow Elevated Interference Zones (EIZ)
 - Interference alleviation at EIZ \rightarrow Enhanced performance.
- Emphasis on RCI mitigation

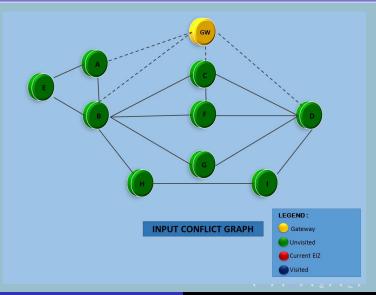
Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA	Conclusions
Features	of EIZM CA				

Spatial Features

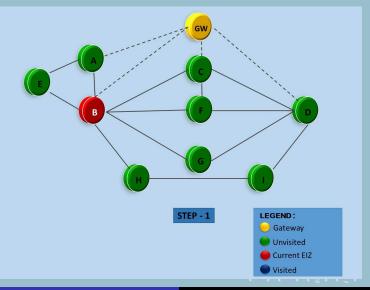

Focuses on localized Elevated Interference Zones.

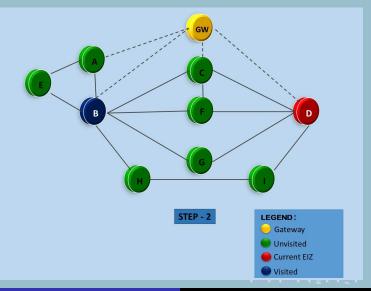

- Identifies EIZ in a WMN through its Conflict Graph.
- Assigns channels to EIZ based on severity of interference.
- Correlates TID with SINR.

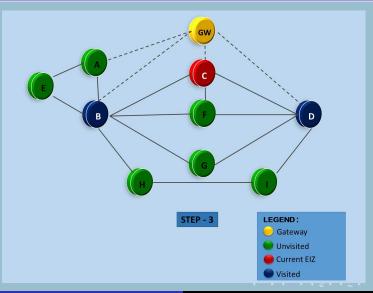
Statistical Evenness

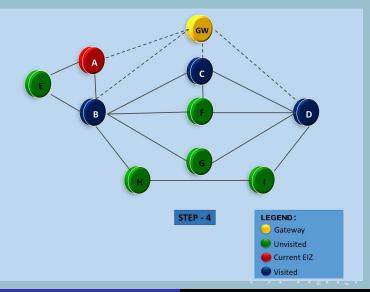

Aimed at equitable distribution of channels across radios.

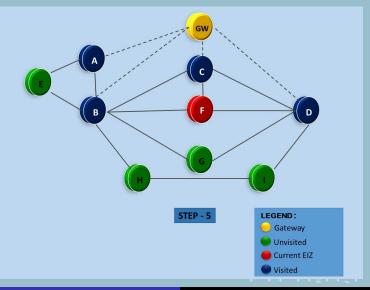
- Most CA schemes start with a default channel assignment.
- $\bullet\,$ Causes overuse of default channel $\rightarrow\,$ Skewed distribution.
 - eg. MaIS-CA, BFS-CA, CEN-CA, CLQ-CA etc.
- EIZM-CA divides MMCG nodes into level Sets (BFS traversal).
 - Adjacent Level Set nodes \rightarrow Orthogonal channels.
 - Improved distribution of channels.



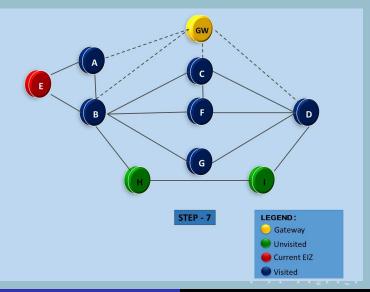

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	:			

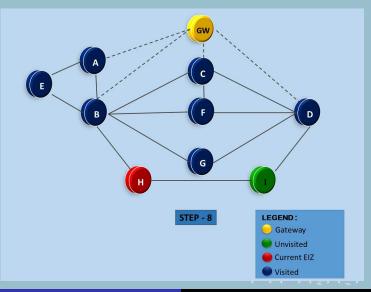

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	9			

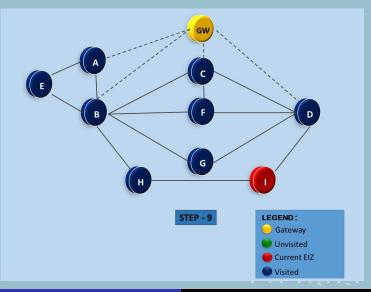

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	9			


Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	9			

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	9			

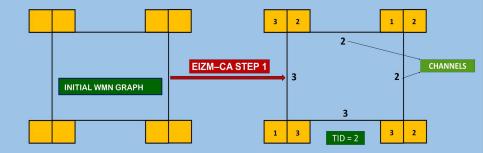

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele Step 5	ection Sequence	9			

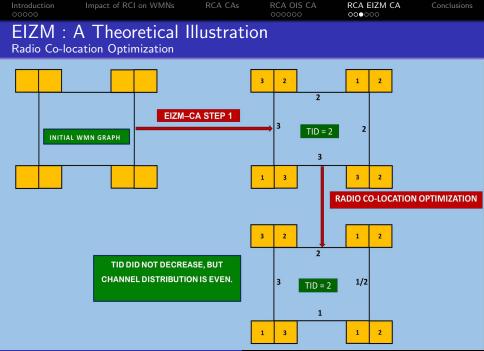

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele Step 6	ection Sequence	9			

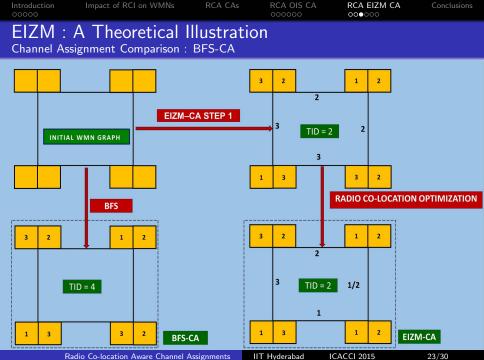

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	9			

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele Step 8	ection Sequence	9			

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●oooo	Conclusions
EIZ Sele	ection Sequence	9			



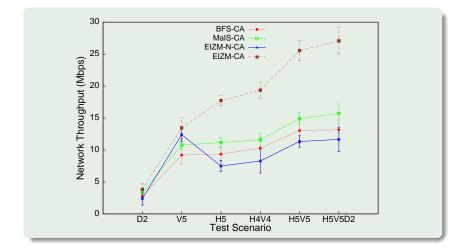

Introduction Im 00000	pact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA oo●ooo	Conclusions
EIZM : A Sample WMN	Theoretical I	llustratio	n		
INITIAL WMN GRAPH - 4 NODES - 2 RADIOS / NODE - 3 CHANNELS AVAIL - NO INITIAL CHANNE		05			
]	EIZM		
		WMN	EIZM	I-CA	
		BFS			


Radio Co-location Aware Channel Assignments

ICACCI 2015

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO Conclusions COOCOCO CONCUSION CONCUSICON CONCUSICA CONC

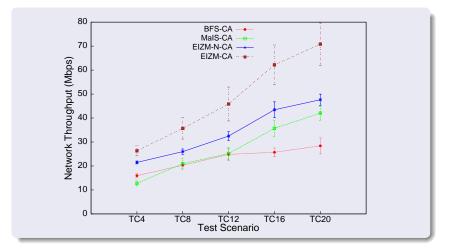
Radio Co-location Aware Channel Assignments


Simulati	on Setup				
Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

Simulation Setup \rightarrow Similar to OIS Simulations

CA Schemes Considered

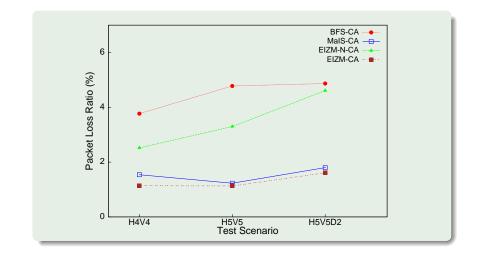
- BFS-CA \rightarrow A Breadth First Search based CA.
- MaIS-CA \rightarrow A Maximum Independent Set based CA.
- EIZM-CA \rightarrow RCA EIZ based CA.
- EIZM-N-CA \rightarrow Non-RCA version of EIZM.


Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA ○○○○●○	Conclusions
EIZM PO GWMN Thre	erformance Eva	luation			

<ロ> <同> <同> < 回> < 回>

æ

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA ○○○○●○	Conclusions
EIZM PO RWMN Thre	erformance Eva	luation			

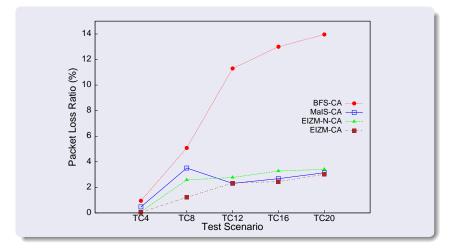


<ロ> <同> <同> < 回> < 回>

æ

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOOO EIZM Performance Evaluation

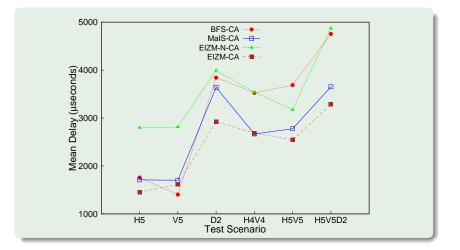
PLR in GWMN


A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

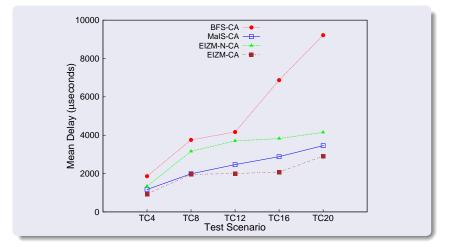
< ∃ →

э

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA RCA EIZM CA Conclusions


PLR in RWMN

∢ ≣⇒


æ

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA ○○○○●○	Conclusions
EIZM P	erformance Eva	luation			

・ロン ・回と ・ヨン ・ ヨン

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA ○○○○●○	Conclusions
EIZM P	Performance Eva	luation			

< ロ > < 回 > < 回 > < 回 > < 回 > .

A			_		
Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA ○○○○○●	Conclusions

Quantitative Analysis of Results

Maximum Increase in Throughput

- EIZM-CA over MaIS-CA $\rightarrow 72\%$
- EIZM-CA over BFS-CA $\rightarrow 149\%$
- OIS-CA over MalS-CA $\rightarrow 43\%$
- OIS-CA over BFS-CA $\rightarrow 81\%$

Maximum Decrease in MD

- EIZM-CA over MaIS-CA $\rightarrow 68\%$
- EIZM-CA over BFS-CA $\rightarrow 28\%$
- OIS-CA over MalS-CA $\rightarrow 41\%$
- OIS-CA over BFS-CA $\rightarrow 19\%$

Maximum Decrease in PLR

- EIZM-CA over MalS-CA $\rightarrow 11\%$
- EIZM-CA over BFS-CA $\rightarrow 81\%$
- OIS-CA over MalS-CA $\rightarrow 41\%$
- OIS-CA over BFS-CA $\rightarrow 88\%$

EIZM-CA vs OIS-CA

- Throughput \rightarrow EIZM-CA > OIS-CA
- PLR \rightarrow EIZM-CA \approx OIS-CA
- MD \rightarrow EIZM-CA \approx OIS-CA

A B M A B M

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA 000000	Conclusions
Conclus	ions				

Radio Co-location Aware Channel Assignments

- EIZM-CA & OIS-CA significantly outperform reference CAs.
 - Radio Co-location Optimization.
 - Equitable distribution of channels across radios.
- EIZM-CA performs better than OIS-CA.
 - Spatio-statistical CA design > Purely statistical CA design.

Introduction 00000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA 000000	RCA EIZM CA 000000	Conclusions
Referen	ces I				

- A. Capone, G. Carello, I. Filippini, S. Gualandi, F. Malucelli, "Routing, scheduling and channel assignment in Wireless Mesh Networks: A Optimization models and algorithms", 2009.
- Yu Xutao, Xu Jin, "A Channel Assignment Method for Multi-channel Static Wireless Networks", , IEEE, 2011.
- Krishna N. Ramachandran, Elizabeth M. Belding, Kevin C. Almeroth, Milind M. Buddhikot, "Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks", ,INFOCOM, 2006.
 - Aizaz U. Chaudhry, John W. Chinneck, and Roshdy H.M. Hafez, "Channel Requirements for Interference-free Wireless Mesh Networks to Achieve Maximum Throughput", ,ICCCN, 2013.
- Cheng, Hongju, et al. "Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks." Ad Hoc Networks 10.5 (2012): 760-773. 2012
 - Ding, Yong, and Li Xiao. "Channel allocation in multi-channel wireless mesh networks." Computer Communications 34.7 (2011): 803-815. 2011

・ロト ・同ト ・ヨト ・ヨト - ヨ

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

THANK YOU

Radio Co-location Aware Channel Assignments IIT Hyderabad ICACCI 2015 29/30

-ৰ ≣ ▶

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

QUERIES ?

▶ ★ 문 ▶ ★ 문 ▶

æ