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Abstract—Due to spatio-temporal variation of mobile sub-
scriber’s data traffic requirements, traffic load experienced by
base stations present at different cell sites exhibit highly dynamic
behavior in traditional cellular systems. This non-uniform and
dynamic traffic load leads to under utilization of the base station
computing resources at cell sites. Cloud Radio Access Network
(C-RAN) is an innovative architecture which addresses this issue
and keeps the Total Cost of Ownership (TCO) under safe limit
for cellular operators. In C-RAN, the baseband processing units
(BBUs) are segregated from cell sites and are pooled in a central
cloud data center thereby facilitating shared access for a set of
Remote Radio Heads (RRHs) present at cell sites. In order to
truly exploit the benefits of C-RAN, the BBU pool deployed in
the cloud has to efficiently serve clusters of RRHs (i.e., many-
to-one mapping between RRHs and BBUs in the BBU pool) and
thereby minimizing the required number of active BBUs.

In this work, potential benefits of C-RAN are studied by
considering realistic traffic loads of base stations deployed in
urban areas by using statistical models. We propose a light-
weight and load-aware algorithm, Dynamic RRH Assignment
(DRA), which achieves BBU pooling gain close to that of a well
known First-Fit Decreasing (FFD) bin packing algorithm. Using
extensive simulations, we show that DRA consumes only 25%
of time on average compared to FFD for the case of urban
cellular deployment of 1000 RRHs. DRA slightly overestimates
the required number of active BBUs as compared to FFD by
1.7% and 1.4% for weekdays and weekends, respectively.

Keywords: Cloud-RAN, BBU pool, RRH assignment and
Dynamic clustering.

I. INTRODUCTION

Cellular networks are evolving continuously with efficient
and robust architectural designs in order to serve the growing
need of data traffic from end users. LTE and LTE-Advanced
are the latest cellular technologies offering high data rates
in a cost efficient way. With rapid increase in the usage
of smartphones, tablets and laptops, the data traffic require-
ment from end users is increasing drastically [1]. Cloud
Radio Access Network (C-RAN) is a next generation cel-
lular network architecture which has capability to meet this
high demand of data traffic from end users while efficiently
addressing deployment and operational challenges faced by
cellular operators [2]. In C-RAN architecture, cell sites contain
Remote Radio Heads (RRHs) having some part of RF circuitry
while Base Band processing Units (BBUs) are pooled in a
central location such as data centers using cloud computing
and virtualization techniques. BBUs are the digital signal
processing components which carry out compute-intensive
tasks serving a set of geographically distributed RRHs. The

functional split of traditional LTE base station (a.k.a eN-
odeB) architecture into RRH and BBU with cloud assisted
deployment options can provide considerable savings in capital
expenditure (CAPEX) and operational expenditure (OPEX) for
cellular operators. From implementation perspective, BBUs
are installed on Virtual Machines (VMs) using hypervisors
over physical computing cores. VMs dynamically share the
physical processing cores present in the cloud data center [3].
The RRH and BBU components exchange baseband signals
known as IQ signals over high bandwidth and low latency
(front-haul) interface in order to meet the stringent real-time
processing requirements of baseband signal processing in C-
RAN. In addition, it provides power saving opportunities at
cell sites, improves spectral efficiency, and helps in seamless
convergence of multiple radio access technologies such as
4G/5G and Wi-Fi [4].

II. MOTIVATION AND RELATED WORK

In traditional cellular RAN architectures, there exists 1:1
static assignment between RRH and BBU, co-located at the
cell sites. But this static 1:1 assignment is very expensive for
4G/5G cellular networks where massive number of cells are
expected to be deployed for addressing mobile data crunch.
In C-RAN, the basic goal is to optimally use BBU pool of
cloud data center by dynamically balancing workloads which
are generated at cell sites [5]. One BBU is capable of serving
a finite set of RRHs (RRH cluster) and mapping between BBU
and RRH cluster should be dynamic and expected to alter with
varying traffic and processing loads over time. Thus, the design
focus should be many-to-one adaptive mapping between RRHs
and BBUs with the objective of minimizing the number of
active BBUs. Figs. 1 and 2 give an example of flexible RRHs
assignments to BBUs which change from one time instant to
another time instant.

First Fit Decreasing (FFD) algorithm for optimal bin pack-
ing is a very well studied optimization problem in the area of
operation research and can be used for efficient clustering of
a group of RRHs to a BBU [3]. The decision to include an
RRH within a cluster vary over different time instants as per
the load experienced from cell sites by BBU. Hence, in order
to capture the traffic dynamism at a fine granularity of time,
the clustering procedure has to run with a fixed periodicity of
shorter time epoch. The RRH loads from cell sites are given as
input to FFD in each time epoch to find optimal RRH clusters
which are then assigned to BBUs in cloud assisted BBU pool.
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Fig. 1: Assignment of cluster {RRHa, RRHb} to BBU1,{RRHc, RRHd}
to BBU2,{RRHf , RRHh} to BBU3 and {RRHe, RRHg} to BBU4.
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Fig. 2: Assignment of cluster {RRHa, RRHb, RRHc} to BBU1, {RRHd,
RRHe} to BBU2 and {RRHf , RRHg , RRHh} to BBU3.

Authors in [6] proposed a multi-dimensional Markov model
for estimating the statistical multiplexing gains of virtualized
BBU pool, but it does not address the randomness exhibited by
realistic systems. In [7], the authors presented an RRH cluster-
ing procedure which is based on multi-objective optimization
without energy saving estimations. With the help of OPNET
modeler, authors in [8] evaluated energy and cost savings in
C-RAN system, but they did not address the uneven traffic
conditions. They claim reduction of user data signal processing
resources by a factor of 4. In [9], the authors considered a TDD
C-RAN system and presented a dynamic RRH-BBU assign-
ment scheme based on the physical resource blocks (PRBs)
utilization. It also highlights coordination among base stations
(BSs) to mitigate interference issue by jointly serving a user
in interference region. For cooperative BS (exploiting CoMP),
the authors in [10] considered maximum weight clustering and
user scheduling approach to derive dynamic clusters, but their
work did not consider uneven user distribution and mobility.

Our main contributions in this paper are given below.

• Towards realization of the vision of having optimal
savings from many-to-one mapping of RRHs to BBU in
C-RAN, we propose an efficient, light-weight, and load-
aware dynamic RRH assignment (DRA) algorithm.

• We then compare performance of proposed DRA algo-
rithm with well known FFD and quantify the potential
benefits in terms of computing resource gains achieved
by pooling BBU resources in C-RAN.

• Extensive simulation experiments are carried out by vary-
ing network setup from small-scale urban area having 200
RRHs to large-scale urban area having 1000 RRHs for
both weekday and weekend traffic profiles.

The rest of the paper is organized as follows: We characterize
spatio-temporal BS (RRH) traffic load variation at cell sites in
Section III. In Section IV, the system model is discussed with
minimization criteria of active BBUs as an integer program-
ming optimization problem. The proposed DRA algorithm
is given in Section V. Experimental analysis of proposed
algorithm is given in Section VI. We finally conclude the paper
in Section VII.

III. CHARACTERIZATION OF TRAFFIC LOADS AT RRH

The spatio-temporal variation of distribution of mobile
terminals (User Equipments or UEs) with diverse data traffic
requirements is an important factor contributing to the network
load on cell sites. Based upon a massive, fine grained data
set collected from a large-scale cellular operator, Wang et.
al. in [11] quantitatively characterized the inhomogeneity in
spatio-temporal user distribution and data traffic. The studied
cellular traffic followed a trimodal distribution comprising
compound exponential, power-law, and exponential distribu-
tions. After collecting a huge data set from a real-world 3G
cellular system, Nan et. al. in [12] provided statistical models
for time varying average throughputs per cell as well as the
instantaneous throughput in each cell which is very useful in
simulating various time-space dependent data traffic patterns.
Temporal Load Pattern: The hourly aggregate traffic load of
a cellular network follows a periodic behavior with relatively
high load during daytime and lowest load during midnight
as most of the users will be sleeping and their devices are
inactive. In the time series, the load on individual base stations
do not follow any periodicity, however the trend is consistent
with diurnal activity patterns of human beings.
Spatial Load Pattern: The spatial randomness and distribu-
tion of traffic loads across different RRHs tend to have greater
geographical disparity. The core of a city or urban region
shows larger peak and moderate traffic fluctuations than that
of the rural areas which follow relatively slower fluctuations.
Similarly, the residential zones tend to be active in off-hours
(nights, weekends and holidays) while business or office areas
are active during daytime in weekdays.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. RRH Load Model

For modeling spatio-temporal variation in traffic loads of
RRHs, we adopted the modeling functions given in [12],
where individual loads of RRHs at a given time instant follow
an exponential distribution. The rate parameter λ of this
exponential distribution is a time-varying function which is
represented as a Gaussian Mixture Model (GMM).
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Fig. 3: Time varying mean RRH load.
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Fig. 4: Weekday spatial plot at 22:00 hour.
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Fig. 5: Weekend spatial plot at 22:00 hour.

The probability density function of an exponential distribu-
tion is expressed by

f(t) = λe−λt, t ≥ 0 (1)

where λ is the rate parameter and mean value is 1
λ . The GMM

used for modeling of time-varying rate parameter is given by

λ =

n∑
i=1

aie
−
(

t−bi
ci

)2

(2)

where ai is the amplitude, bi is centroid location, ci is the peak
width, n represents number of peaks in data series and t is any
time instant in 24 hours of the day. Using these two models, we
generated snapshots of spatial loads on each of RRHs of whole
network under study for a given time instant. Let li be the load
on ith RRH, then, value of li is an exponential random variable
with mean value of 1

λ . Fig. 3 shows normalized mean values of
traffic load considering loads from all the spatially distributed
RRHs under study for 24 hour interval. As seen from the
figure, load varies differently for weekdays and weekends.
Figs. 4 and 5 show 3D spatial distribution plots of normalized
RRH load (e.g., range of [0,1]) in a 10 km × 10 km grid
layout of urban region with 100 RRHs at 22:00 hour of the
day for both weekday and weekend, respectively with more
peaks on weekend than weekday.

B. BBU Load Consideration

The processing load incurred by a UE at a BBU in the BBU
pool in a given Transmission Time Interval (TTI) depends on
the number of Resource Blocks (RBs) allocated to that UE and
their corresponding Modulation and Coding Scheme (MCS)
values [3]. Hence, the overall processing load of an RRH on
BBU in a given TTI is the summation of processing loads of
all the UEs connected to that RRH in that TTI. We define
theoretical peak processing load of RRH, assigned to one of
BBUs in the BBU pool, by considering a single UE which is
allocated all of the RBs with highest MCS value in one TTI.
Based on specifications of VMs (e.g., number of processor
cores, their clock speed, memory capacity, bandwidth, etc)
hosting a BBU pool in the cloud, a single BBU may be capable
of processing peak processing loads of one or more RRHs.
Since, most of the times, traffic load at RRHs is not at its peak,
we could assign even more number of RRHs to a given BBU

in the BBU pool. Note that BBU peak capacity is different
from that of RRH peak load. Cellular operators, by applying
efficient dynamic RRH assignment schemes, could scale down
or scale up number of active BBUs required in the BBU pool.

C. Energy Model

Depending upon the load generated at cell sites, we adopt
an energy consumption model given in [13] to estimate energy
savings and the results are presented later in Section VI. The
total power consumed at any active BBU at time instant t is

PBBUt = PBB +

n∑
i=1

PRRHi (3)

where PBB is power consumed by that particular BBU and∑n
i=1 PRRHi is sum of the power consumed by all the RRHs

associated with that particular BBU at time t. The power
consumed by a specified RRH is given by

PRRH =

(
Pr
Epa

)
+ (Prf ×Ntx) (4)

where Pr is the radiated power, Epa is the power amplifier
efficiency, Prf is the power used by RF circuits and Ntx is
the number of transceiver antennas.

D. Cluster Model

The RRH clustering and assignment problem can be formu-
lated as a generalization of classical bin packing optimization
problem where the BBUs imitate the bins and RRHs form the
item set. Its solution is NP-hard [14] and various heuristics and
approximation procedures are applied to find a near optimal
solution. FFD is one of the most efficient heuristics where the
number of used bins are bounded by

(
11
9 ×OPT + 6

9

)
with

OPT being the optimal number of bins [15]. The objectives of
the RRH clustering procedure are mentioned below.
• Maximize the resource utilization of each BBU by map-

ping as many RRHs as possible to each BBU
• Minimize total number of BBUs to be switched-ON

(utilized) for processing user requests coming from RRH
clusters in the network

• Identify the subset of RRHs (termed as RRH cluster) to
be assigned to each active BBU in the BBU pool

Table I presents list of variables used in problem formulation
of RRH allocation to BBUs as an integer programming model.



TABLE I: Glossary

Notation Definition

N Set of all RRHs
M Set of all BBUs in BBU Pool
li Processing load incurred by RRH i
zm 1 if BBU m is active; otherwise 0
yim 1 if RRH i is associated with BBU m; otherwise 0
lmax Peak BBU capacity

Optimization Model:

Objective Function: Minimize
|M|∑
m=1

zm.

Constraints:

|M|∑
m=1

yim = 1, ∀i ∈ N (5)

|N|∑
i=1

yim × li ≤ lmax × zm, ∀m ∈ M (6)

The constraint in Eqn. 5 ensures the fact that each RRH is
associated with exactly one BBU, and Eqn. 6 ensures that the
sum of loads from RRHs associated to a BBU does not exceed
the BBU peak capacity. Using the RRH load model given in
Section III, we propose a novel heuristic method, DRA in
Section V and highlight its benefits in comparison with FFD.

V. PROPOSED DRA ALGORITHM

In this work, we propose a light-weight, load aware, dy-
namic RRH assignment (DRA) algorithm which performs very
close to FFD in terms of BBU savings. The basic principle
of this algorithm is to offload one or more RRHs (known
as Candidate RRH(s)) from an overloaded BBU to a less
loaded BBU with enough available computation capacity to
accommodate the incoming RRH(s). As one BBU serves a
cluster of RRHs, this change in RRH assignment among BBUs
results in formation of new cluster from that of previous
clusters. In Section II, we already discussed the demerits of
1:1 static mapping between RRHs and BBUs, thus shifting
our attention to exploit the resource savings in many-to-one
dynamic mapping between RRHs and BBUs.

Assume δt is the periodicity of cluster formation. For
capturing traffic dynamism when δt → 0, the many-to-one
RRH clustering algorithm must be applied to RRH loads at
each interval δt. FFD is one of the baseline and very efficient
many-to-one clustering algorithms, but the running time is
of higher order of magnitude for a large number of RRHs
making it infeasible for smaller value of δt. In other words,
clustering with FFD leverages frequent re-clustering to obtain
the BBU resource gain. Our proposed approach eliminates
the unnecessary re-clustering by checking the offered load
to BBU and dynamically assigns only eligible RRH(s) from
overloaded BBU to less loaded BBU. From implementation
perspective, each cluster is a finite group of RRHs and
set of all such clusters form a partition of the RRH set

N. Let us denote partition Pmod as the partition containing
clusters which need reassignment of RRHs due to change
in RRH load. spill load for a given cluster is the excess
spill amount which is the difference between the sum of
processing loads for constituent RRHs in that cluster and
maximum load capacity of cluster. Mathematically, assuming
there are r number of RRHs associated with a given cluster,
spill load = ((

∑r
i=1 li) − lmax) where li is the load on ith

associated RRH and lmax is the maximum load a BBU can
handle. For a given cluster, if spill load > 0, it is known
as spill cluster and spill load ≤ 0 is called non spill cluster.
Candidate RRH is an associated RRH in a spill cluster whose
removal will convert it to a non spill cluster. We describe
an Offload Selection subroutine in the following subsection
which takes care of selecting eligible Candidate RRH. Algo-
rithm 1 summarizes the proposed DRA scheme.

Algorithm 1 : DRA Algorithm

1: Based on spill load, classify the clusters in Pmod as
spill cluster and non spill cluster

2: In case, no spill cluster is found, just return Pmod
3: In case, all clusters are spill cluster, perform FFD on pro-

cessing loads contained in Pmod into BBU. This situation
is too unrealistic to occur in practice when δt→ 0

4: For each spill cluster, find Candidate RRH(s) to offload
using Offload Selection subroutine

5: Find a non spill cluster with enough resources to accom-
modate Candidate RRH, perform RRH assignment to it

6: If no such non spill cluster, get a new BBU from BBU
pool and perform the RRH assignment to the new BBU

7: Apply merge procedure on non spill clusters using FFD
and return new partition Pnew

Numerical Illustration: Table II shows three different
clusters at time t with all RRH loads normalized in the range
of [0, 1]. Let us denote this as partition P of RRH set N .
The total load experience by each of the clusters is less than
the peak capacity of BBU. At time (t+ δt), assume some of
the associated RRH loads varied due to traffic inhomogeneity
shown as clusters of partition Pmod.

TABLE II: Numerical Illustration

Partition P at time t
C1 = {0.71, 0.14, 0.08},

∑
C1 = 0.93

C2 = {0.56, 0.19},
∑
C2 = 0.75

C3 = {0.47, 0.25, 0.11},
∑
C3 = 0.83

C4 = {0.24, 0.48},
∑
C4 = 0.72

Partition Pmod at time (t+ δt)

C1mod = {0.56, 0.14, 0.40},
∑
C1mod = 1.10 (spill cluster)

C2mod = {0.31, 0.48},
∑
C2mod = 0.79 (non spill cluster)

C3mod = {0.21, 0.39, 0.80},
∑
C3mod = 1.40 (spill cluster)

C4mod = {0.11, 0.24},
∑
C4mod = 0.35 (non spill cluster)

Partition Pnew at time (t+ δt) after DRA algorithm
C1new = {0.56, 0.40},

∑
C1new = 0.96

C2new = {0.31, 0.48, 0.14},
∑
C2new = 0.93

C3new = {0.21, 0.39},
∑
C3new = 0.60

C4new = {0.11, 0.24},
∑
C4new = 0.35

C5new = {0.80},
∑
C5new = 0.80

After FFD, C3,4new = {0.21, 0.39, 0.11, 0.24},
∑
C3,4new = 0.95
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Fig. 6: Variation in BBUs usage for a weekday in
a C-RAN with 1000 RRHs.
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Fig. 7: Variation in BBUs usage for a weekend in
a C-RAN with 1000 RRHs.
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Fig. 8: CPU time taken in each interval for 1000
RRHs.
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Fig. 9: Execution times of FFD and DRA algorithm at 16.00 hour on a weekday
w.r.t varying number of RRHs.
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DRA procedure takes first spill cluster C1mod and calcu-
lates the spill load which is (1.10 − 1) = 0.10. For spill
amount of 0.10, DRA finds suitable Candidate RRH to be
offloaded from C1mod by Offload Selection subroutine. In this
case, RRH with normalized load 0.14 is the Candidate RRH,
which needs re-assignment to another non spill cluster. Clus-
ter C2mod is suitable non spill cluster capable of accom-
modating additional normalized load of (1 − 0.79) = 0.21
without reaching peak capacity of BBU. Hence, RRH with
normalized load 0.14 can be re-assigned to C2mod. After this
assignment both C1mod and C2mod are non spill clusters. For
spill cluster C3mod, spill load is 0.40 and Candidate RRH
is 0.80. As no non spill cluster can accommodate this load,
DRA switches on a fresh BBU C5new. This process re-
peats for all the spill clusters until each of them converts
to non spill clusters. The resulting clusters after this process
may not fully utilize all processing capacity of BBUs because
RRHs are locally re-assigned. The DRA scheme applies FFD
(Step 7 of DRA algorithm) on all resulting non spill clusters
to ensure minimum number of clusters (hence minimum
number of BBUs), each with higher possible utilization. In
this illustration, C3new and C4new are not optimal clusters,
because their sum is below 1. Hence, FFD packing outputs a
single cluster C3,4new with total assigned load of 0.95. The
final partition of RRH set contains 4 clusters as shown in
Table II and are given by C1new, C2new, C3,4new and C5new.

Subroutine - Offload Selection: The decision of remov-
ing a Candidate RRH from a spilled cluster is essential
for stability of the system and convergence towards optimal
clustering. DRA algorithm ensures this characteristic by Of-
fload Selection subroutine which selects an offload candidate.
There are two possibilities of selecting an offload candidate

based on the value of spill load in spill cluster S. Let
max(S) denotes the maximum RRH load value present in
cluster S. If spill load ≤ max(S), choose RRH in S whose
processing load is just greater than or equal to spill load.
Otherwise, sort the associated RRH loads in non-increasing
order and remove RRHs sequentially (the highest load first)
one after another until the cluster S becomes non spill cluster.
Asymptotic Analysis: The asymptotic analysis of time com-

plexity for both FFD and proposed DRA scheme are summa-
rized in Table III. For FFD best case, all RRH loads have to
be sorted in non-increasing order, thus taking O(|N|log|N|)
time. In FFD worst case, due to high RRH load, each RRH
can consume one BBU with O(|N|2) number of comparisons.
In average case, there is at most O(|N|2) comparisons in FFD.

In best case, DRA does not need any reassignment, but it
has to scan every RRH load to ensure that no spill cluster
exists. Thus, it’s running time is O(|N|). In worst case, all
the spill clusters may demand switching on a new BBU
resulting total N clusters. Hence, step 7 of the DRA scheme
may apply FFD to N clusters taking O(|N|2) comparisons.
In average case, suppose DRA forms k clusters out of N
RRHs, then on average

(
k
2

)
clusters are of spill type and

(
k
2

)
are of non spill type. Hence, the running time for RRH re-
assignment encompass O(|k|2) for deriving final cluster along
with O(|N|) RRH comparisons.

TABLE III: Asymptotic complexity analysis.

Test Input FFD DRA Scenario

Best Case O(|N|log|N|) O(|N|) No spill cluster

Average Case O(|N|2) O(|N|+ |k|2) spill clusters and
non spill clusters

Worst Case O(|N|2) O(|N|2) All spill clusters



VI. EXPERIMENTAL SETUP AND PERFORMANCE RESULTS

Our simulation setup considers downlink transmission pro-
cessing of C-RAN, with weekday and weekend traffic profiles
spanning 24 hours with time domain sampling of 10 samples
per hour. Thus, in 24 hours of a day, we collected a total of 240
samples where sampling periodicity δt = 6 minutes. In spatial
domain, we evaluated a large scale urban network with 200 to
1000 RRHs. Each independent run of simulation is associated
with 10 seeds and results are averaged. The simulations are
carried out on a commodity hardware having Ubuntu 64-bit
Linux distribution on x86, Intel 4 core, 1.7 GHz processor.
Other simulation parameters are summarized in Table IV.

We compared the system performance in terms of the
computational resource gain (number of active BBUs) ob-
tained from RRH clustering along with the power consumption
trend for FFD and proposed DRA scheme. In Section III,
we highlighted the exponential distribution of RRH load in
spatial domain. Using the same distribution model, individual
RRH loads are generated which vary over space and time
dimensions. We obtain the processing load on BBU for a given
RRH by assuming that the load is distributed equally across
all the UEs connected to this RRH. Also, we assume that the
processing capacity of the BBUs is equal to the processing
load of the peak RRH load. To quantify gains, these loads
are given as inputs to the proposed DRA and baseline FFD
schemes.

Figs. 6 and 7 show the BBU gains for weekday and
weekend, respectively for a large scale urban cellular network
setup containing 1000 RRHs where BBU gain is the savings
in number of BBUs needed compared to 1:1 and baseline
FFD schemes. On average, compared with 1:1 RRH to BBU
mapping scheme, DRA reduces the required number of BBUs
by 87%. It is observed that DRA over estimates FFD by
1.7% and 1.4% of the total number of BBUs on weekday and
weekend, respectively. We then compared the total running
time of the algorithm for 1000 RRHs, which is shown in
Fig. 8. The comparison of execution time of FFD and DRA
in seconds at 16.00 hours of the day by varying the number
of RRHs between 200 and 1000 is presented in Fig. 9. With
increase in number of RRHs, C-RAN needs to deploy more
number of BBUs for serving them and hence there is an
expected increase in execution time of algorithms. Fig. 10
shows that more than 90% energy savings for C-RAN could
be realized with varying size of BBU pool (4 to 20 BBUs)
using DRA scheme compared to conventional RAN. Larger
pool size offers more energy saving opportunities due to shared
infrastructure maintenance and cooling.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed and quantified the BBU resource
savings and time complexity measures of DRA in contrast to
FFD considering spatio-temporal traffic variations from base
stations. DRA is capable of reducing the time complexity of
clustering procedure as compared to FFD in an urban network
setup and offers quite close BBU resource savings. The savings
trend follows a diurnal human traffic pattern which validates

TABLE IV: Simulation Parameters

Parameter Value
Number of RRHs 200 to 1000
Sampling periodicity 6 minutes
Traffic duration 24 Hours
Total number of samples 240
Traffic profile Weekday, Weekend
Geographical region Urban
RRH load range [0,1] (0 to 100%)
Maximum Load on BBU 1 (100%)
Spatial load distribution Exponential
Time-varying rate parameter Gaussian Mixture Model

our proposed scheme. As part of ongoing work, we aim to
define various dependent factors such as UE position, cell edge
constraints, BS cooperation (e.g., CoMP) in the processing
load characterization of RRH for quantifying savings.
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