
Adaptive Broadcast Scheduling Scheme for
High-definition Map Tile Dissemination in Vehicular

Networks
Madhuri Annavazzala, Surpiya Dilip Tambe, Antony Franklin A., and Bheemarjuna Reddy Tamma

Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad
Email: {cs21mtech02003, cs18resch11002, antony.franklin, tbr}@iith.ac.in

Abstract—Autonomous vehicles require precise and reliable
data for critical functions like localization and navigation.
High-Definition (HD) maps are essential, segmented into vari-
ous layers (each with varying roles and lifespans) and verti-
cally structured into ‘tiles’ that encapsulate these layers. Effi-
ciently disseminating these tiles via Road Side Units (RSUs) in
Vehicle-to-Everything (V2X) networks is challenging. An efficient
dissemination method must minimize both the Turn Around
Time (TAT)—the time from a tile request to receipt—and the inci-
dence of schedule misses, which is when a vehicle does not receive
a tile before its deadline, impacting reliability and performance.
This paper introduces an Adaptive Broadcast Scheduling (ABS)
scheme tailored for HD maps, factoring in layer priority, request
popularity, and deadlines. Experimental studies show that ABS
outperforms conventional periodic broadcast by cutting schedule
misses by over 50% and reducing TAT to milliseconds.

Index Terms—Adaptive Scheduling, Broadcast Schemes, High-
definition Map, Optimization, Vehicle-to-Everything (V2X).

I. INTRODUCTION

AUTONOMOUS vehicle navigation relies on High-
definition (HD) maps, which provide intricate, centimeter-

level environmental details essential for safe operation [1].
However, the development and utilization of HD maps present
significant challenges due to their extensive data requirements,
impacting both uplink and downlink of mobile networks. Con-
ceived at a 2010 Mercedes-Benz workshop [2], these maps
transcend conventional navigation tools by providing real-
time, granular insights into road layouts, markings, signs, and
conditions, enabling autonomous systems to navigate com-
plex traffic with efficiency and make split-second decisions
to ensure safety. In 2012, the introduction of Local Dynamic
Maps (LDM) further fueled the discussion and development
of HD maps by outlining four layers that stored both static
and dynamic information locally [3]. Although agencies have
been working on creating HD maps such as Navigational Data
Standard (NDS) [4] and OpenDRIVE [5] which usually have
Point Cloud Data (PCD)1 and Open Street Map (OSM)2 for-
mats, there is no standardized framework dictating the specific
number of layers requisite within an HD map yet.

Fig. 1 shows that HD maps, unlike traditional 2D naviga-
tion maps, consist of multiple layers [6]. A vertical section
of this 3D grid is a ’tile’, while a horizontal section is a

1https://pointclouds.org/documentation/tutorials/pcd file format.html
2https://www.openstreetmap.org/

Weather updates, temporary obstacles 

Pedestrain, vehicle paths

Buildings, road segment etc

Lane closed, accident etc

Layer 4:
Highly Dynamic 

Layer 3:
Transient Dynamic 

Layer 2:
 Transient Static 

Layer 1: 
Permanent Static 

Tile
Segment

Grid

Fig. 1: An example of HD map with four layers.

’layer’. Each layer has distinct characteristics in terms of
data, scale, and temporal relevance. The bottom layer, updated
monthly/weekly/hourly, includes static information like roads
and buildings is the most important layer without which even
basic navigation would not be possible. In contrast, the top
layer, updated in real-time, contains dynamic data such as
pedestrian and vehicle movements. Update frequencies for
intermediate layers range from minutes to weeks, depending
on their role. For autonomous vehicles, timely access to these
layers is critical for effective decision-making, necessitating a
scheduling system in wireless environments that accounts for
vehicle mobility, channel usage, deadlines, and layer impor-
tance.

In 5G New Radio Vehicle-to-Everything (NR-V2X), Road
Side Units (RSUs) primarily use unicast/multicast or broadcast
mechanisms for wireless information dissemination [7]. Unicast
and multicast mechanisms, which operate on request-reply
and publish-subscribe patterns respectively, consume signifi-
cant bandwidth due to signaling overhead and can lead to
redundancy when multiple vehicles request the same data. In
contrast, broadcast mechanisms, transmitting information once
for access by all vehicles, are more scalable in dense NR-V2X
environments as they do not require resource allocation for each
vehicle.

HD maps require extensive data, impacting both uplink and



downlink of mobile networks. Unicast and multicast are less
suitable for densely populated areas and are generally used
for private data, while broadcast mechanisms are bandwidth-
efficient for public data like HD maps. However, traditional
broadcast mechanisms have limitations, such as delay in re-
ceiving requested data (schedule misses) and unnecessary data
dissemination. To address these issues effectively, we propose
the Adaptive Broadcast Scheduling (ABS) scheme. This scheme
not only assesses the size and temporal aspects of each tile
but also actively evaluates the demand for different tiles.
By incorporating the popularity of tiles into its scheduling
algorithm, ABS dynamically schedules tiles in the broadcast
channel in real-time, ensuring a more efficient and demand-
responsive dissemination of data.

The following are the key contributions made in this work:
• We devise a mathematical model that takes into consid-

eration the bandwidth of RSU, speed of the vehicles and
the HD Map size to encapsulate a HD map dissemination
system. This model further evolves into an optimization
framework, highlighting the NP-hard nature of the associ-
ated scheduling algorithm.

• We also propose a heuristic ABS scheme that considers
the priority of each layer, validity constraints (deadlines),
and popularity of the requested tiles to provide the dissem-
ination of tiles by increasing the hit rate in dense vehicular
environments.

The rest of the paper is organized as follows: Section II
provides the related work. Section III presents the system
model. Section IV presents the proposed Adaptive broadcast
tile scheduling (ABS) algorithm in detail along with the de-
vised optimization model. Section V contains the simulation
setup used for performance evaluation. Section VI presents the
simulation results. Finally, Section VII concludes the paper with
some future research directions.

II. RELATED WORK

The existing literature primarily focuses on how vehicles
request HD map data from RSUs and the strategies for caching
this data for quick delivery. Studies like [8, 9, 10, 11], empha-
size pre-fetching and storing HD map content in cache using
methods like Long short-term memory (LTSM), Area of Inter-
est (AoI), data scope, cooperative caching techniques, and dis-
tributed Multi-Agent Multi-Armed Bandit learning (MAMAB)
methods respectively.

These approaches mainly utilize unicast patterns, which may
not be efficient for real-life scenarios, especially considering
the significant data volume inherent in real HD maps, such
as Google’s HD map, which holds around 1 GB of data for
every mile [12]. This considerable data size presents unique
challenges in terms of efficient storage, retrieval, and wireless
dissemination, underscoring the need for more specialized
and robust data handling techniques in this context. Even in
proposed scheduling approaches in [13], despite the focus on
time-critical data dissemination in some literature, there’s a
notable gap in discussing specific scheduling techniques for
HD map data, which also includes essential aspects like the

Vehicle1 Vehiclen RSU

1

2

...

Sense channel

3

Tile
available Tile does

not exist

4 Request tile

5

67

8

Vehicle reaches
request tile

position

Enter area

Enter area

Check cache
Check cache

Update cache

Broadcast tile

Queued,
Decision= Broadcast

Tx

Tp1

Tpr

Tp2

Tw

Cache Cache
Storage

Fetch tile

Fig. 2: Working of the HD Map dissemination system.

size and priority of different layers. This highlights the need
for exploring wireless dissemination strategies for HD map
data. The closest research addressing the use of broadcasting
for map tile dissemination, with the advent of digital terres-
trial broadcasting in Japan [14]. However, while utilizing
broadcasting for map tiles, it veered towards proposing a new
cache system rather than a scheduling algorithm. It introduces
”scope” and ”mobility specification” for effective pre-fetching
and replacement of broadcast data. Although it recognizes the
limitations of basic broadcasting, it stops short of suggesting a
new scheduling algorithm to overcome the challenges posed
by periodic broadcasts. Furthermore, the focus was on 2D
navigational maps like Google Maps, not on broadcasting HD
maps. This underscores the necessity for developing scheduling
algorithms that specifically account for the distinct character-
istics of HD maps. To the best of our knowledge, this work is
pioneering in addressing this particular need.

III. SYSTEM MODEL

This section outlines the system architecture for HD map
dissemination, as depicted in Fig. 2. We assume that the RSU
is equipped with NR-V2X radio working in Mode 1, and serves
as the HD map dissemination server. It stores the map divided
into tiles of different sizes and two layers (losm,lpcd) each
with different size and validity within its local storage. We
assume that, up to 80% of the RSU’s bandwidth, denoted as
BR is dedicated to disseminate the layers of HD Map over the
broadcast channel using the PC5 interface, facilitating Vehicle-
to-Interface (V2I) communication. The rest is allocated for
other communications, including handling unicast requests for
tiles from the vehicles.

The set of moving vehicles denoted by V = {v1, v2, · · · , vv}.
When a moving vehicle v, requires one or more layers l ∈ L for
an upcoming road segment, it initially searches its local cache
using the location of the upcoming path. If the layer/tile is either
absent or outdated, the vehicle monitors the broadcast channel



TABLE I: Key Notations

Notation Description

V Set of v vehicles.
S Set of s slots.
R Set of r tile requests.
N Number of requests in R
L Set of l layers.
Q Maximum priority queue to order tile requests.
O Ordered set of tile requests.
Tx Transmission delay of vehicle.
Tp1 Propagation delay from vehicle to RSU.
Tp2 Propagation delay from RSU to vehicle.
Tpr Queuing and processing delay at RSU.
Tch Time to acquire channel.
Ttat Turn Around Time (TAT) of the requested tile.
Tpos Time required by the vehicle v

to reach the requested tile position.
T r
b Time at which a tile request r appears on

the broadcast channel.
T Complete duration.
t Current time.
tar Arrival time of the tile request r.
tdr Deadline of the tile request r.
TP Broadcast period.
BR Physical data rate of RSU.
Bv Physical data rate of vehicle.
DRV Distance between RSU and vehicle.
DV L Distance between vehicle and requested tile.
speedv Speed of the vehicle V (in km/hr).
sizer Size of tile request packet (in bytes).
c Speed of light.
Popularity(r) Number of times vehicles requested r.
Priority(r) Relative importance of the layer.

to check if the needed data is currently being broadcasted by
the RSU. In the event the data is not being broadcasted, the
vehicle then sends a unicast request to the RSU. The set of
all vehicle requests denoted by R = {r1, r2, · · · , rr}. These
requests are generated for a duration T . For simplicity, this
duration T is divided into set of time slots denoted by S =
{s1, s2, · · · , ss}. This request r ∈ R includes its own location,
the specific tile’s location and its speed speedv , communicated
at a physical rate of Bv . This allows the vehicle to engage
in pre-fetching the tile by transmitting its forward latitude and
longitude coordinates to the RSU, which is then converted into
tile IDs. The assignment of these tile IDs is an internal process
at the RSU and is not disclosed to the vehicle. The vehicle
takes Tx time to acquire the channel by following dynamic
scheduling scheme [7] of Mode 1 and transmits the request. It
is given by Tx = Tch+

sizer
Bv

. RSU receives this request r after
a propagation delay of Tp1, where Tp1 = DRV

c .

The RSU processes each received tile request through a struc-
tured approach consisting of three distinct phases: decision,
queuing, and scheduling. It takes Tpr time to process the tile
request and the broadcast reply reaches the vehicle after a delay
of Tp2. The entire duration, encompassing the time from when
a vehicle requests a tile, to the moment it successfully receives
it from the RSU, is collectively referred to as the TAT, Ttat,
which is given by Ttat = Tx + Tp1 + Tpr + Tp2.

For every request r, Ttat must be strictly shorter than the time
it takes for the vehicle v to reach the position of the requested
tile, Tpos. Which means that the RSU has to schedule every
request r, at some slot s in the broadcast channel, at time t
such that slot s occurs before the vehicle reaches tile position.
Tpos = DV L

speedv
. If this condition is not met, the situation is

classified as a schedule miss. This requirement ensures that the
information received is timely and relevant for the vehicle’s
navigation. Ttat < Tpos.

IV. PROPOSED WORK

In this section, we develop an optimization model for HD
Map scheduling and prove its NP-Hardness. The optimal solu-
tion requires prior knowledge of the request order, which is typ-
ically unfeasible in real-world scenarios. Therefore, given these
constraints and the complexity of the problem, we propose a
heuristic scheme (ABS), as a more practical and implementable
approach and present it in detail.

A. Optimization Model

The objective is to minimize the sum of unscheduled requests
across all requests ∈ R, taking into account the arrival and
deadline times for each request. The decision variable is Xt

r,s =
1, if request r is scheduled in slot s at time t, otherwise 0.

min
∑
r∈R

1−
tdr∑

t=tar

∑
s∈S

Xt
r,s

 (1)

subject to the following constraints:
• Slot occupancy constraint: Each slot s can hold only one

tile at a time t. This constraint ensures that two requests
cannot be scheduled in the same slot s at the same time t.

∀s ∈ S, ∀t :
∑
r∈R

Xt
r,s ≤ 1. (2)

• Request scheduling constraint: Every request needs to
be scheduled at least once between its arrival time and
deadline.

∀r ∈ R :

tdr∑
t=tar

∑
s∈S

Xt
r,s ≥ 1. (3)

B. NP-Hardness of the Problem

A known NP-Hard problem, a satisfiability (SAT) problem is
a decision problem that asks whether there exists an assignment
of boolean values to variables that satisfies a given boolean
formula [15]. Our problem can be broadly categorized as a
multi-objective scheduling problem, where the approach not
only tries to maximize the schedule hits, but also ensure that it
maintains the priority while doing so. The constraints can be
re-written into those of a boolean formulation, where we need
to prove its feasibility.

• For the slot occupancy constraint, for each time t and each
slot s, we introduce clauses that essentially state if one
request r is scheduled in slot s at time t, then no other
request r′ ̸= r can be scheduled in slot s at the same time.
The clause for two requests r1 and r2 would be:

¬Xt
r1,s
∨ ¬Xt

r2,s
. (4)



• For the request scheduling constraint, we need to ensure
that for each request r, there is at least one t and s such
that Xt

r,s is true. This is represented by a clause for each
request that is a disjunction of all the possible Xt

r,s within
the valid time frame for request r:

tdr∨
t=tar

∨
s∈S

Xt
r,s = 1. (5)

A feasible schedule for the multi-objective job scheduling
problem exists if there’s a satisfying assignment for the corre-
sponding SAT problem. This establishes the multi-objective job
scheduling problem as at least as complex as the SAT problem,
implying the absence of an efficient polynomial-time solution.
Addressing this complexity, we introduce a heuristic scheme
(ABS), which is designed to schedule as many requests as
possible within a feasible polynomial time frame.

C. Proposed ABS Scheme

For dense NR-V2X network, we proposed the ABS scheme
which structured into three distinct phases: decision, queuing,
and scheduling. The decision and queuing phases act as pre-
processing stages. They are responsible for managing the
incoming requests by first deciding which requests to process
and then organizing them in a queue. This setup prepares
the requests for the scheduling phase, where they are actually
scheduled for dissemination. This structured approach stream-
lines the process, ensuring efficient handling of requests in the
system.

Algorithm 1: Queuing Phase
Input: Set of requests R, with priorities, popularity, and deadlines
Output: Set of ordered requests, O

1 Initialize the max-priority queue, Q.
2 for r in R do
3 Enqueue r into Q

4 Initialize an empty list for ordered requests, O.
5 while Q is not empty do
6 r1 ← Dequeue the top element from Q if Q is not empty then
7 r2 ← Peek the next top element from Q. if Priority(r1) >

Priority(r2) then
8 Append r1 to O;

9 else if Priority(r1) < Priority(r2) then
10 Append r2 to O; Reinsert r1 into Q;

11 else
12 if Popularity(r1) > Popularity(r2) then
13 Append r1 to O;

14 else if Popularity(r1) < Popularity(r2) then
15 Append r2 to O; Reinsert r1 into Q;

16 else
17 if Deadline(r1) < Deadline(r2) then
18 Append r1 to O;

19 else
20 Append r2 to O; Reinsert r1 into Q;

21 else
22 Append r1 to O;

1) Decision Phase: In the decision phase, the RSU assesses
whether the tile requests from vehicles need to be added to the
scheduling queue. If the requested tile is not already scheduled
for imminent broadcast or set to be broadcasted before the
vehicle reaches the tile’s position, the request is then pushed
into the scheduling queue. This decision hinges on comparing
the current time t with the broadcast time T r

b of the tile request
r. If T r

b - t is less than Tpos, indicating the tile will be
broadcasted in time, the request is not queued; otherwise, it
is added to the queue for processing.

2) Queuing Phase: In the queuing phase mentioned in
Algorithm 1, we employ a max-priority queue Q, to organize
the tile requests based on a composite priority derived from
layer priority, popularity, and deadline. Each new request is
efficiently inserted into this queue according to its overall
priority. Initially, the priority of requests is the primary factor
for ordering. When requests have identical priorities, popularity
and deadline serve as secondary criteria for sorting. Addition-
ally, by manipulating these priorities and combining them into
weighted ratios, we can develop various schedulers to optimize
queue management further, tailoring it to different operational
requirements or scenarios.

3) Scheduling Phase: In the scheduling phase mentioned in
Algorithm 2, the RSU selects the request r1 from the queue
(ordered in descending order of priority in Algorithm 1) and
determines its type. Different rules apply depending on the
request type. Requests for osm layer (losm), deemed the most
critical layer, receive the highest priority. The RSU prioritizes
scheduling these losm requests, even if it means replacing a pcd
request (lpcd), to ensure at least basic navigation functionality of
the vehicle. It searches for suitable slots between the request’s
arrival time and deadline, favoring empty slots or those with
lower priority requests. For high-speed vehicles, the availability
of candidate slots decreases, potentially leading to schedule
misses if no suitable slot s is found. The pcd requests are
scheduled into either empty spaces or lower-priority pcd slots,
recognizing a potential pcd starvation. The focus, however,
remains on minimizing osm misses to maintain essential navi-
gation capabilities.

During the decision phase, each of the N requests under-
goes a constant-time comparison to ascertain the necessity
of queuing. In the queuing phase, a max-priority queue is
employed for both sorting and inserting elements. This step
introduces a time complexity of O(NlogN) [16]. Following
this, the scheduling phase requires, in the worst-case scenario,
examining all possible time slots from the arrival time ta to the
deadline td for each request. Consequently, this results in a time
complexity of O((td − ta + 1) · N). Given that (td − ta + 1)
is significantly smaller compared to N , the overarching time
complexity of the algorithm is effectively O(NlogN).

D. Demonstration of Considered Approaches

To provide a brief overview of ABS, consider requests from
the vehicle, r1 to r8 which vary in priority, popularity, and
deadline, reflected in a color spectrum from dark red (high
priority) to light blue (low priority) as illustrated in Fig. 3.



Algorithm 2: Scheduling phase
Input: Request r with its properties
Output: Request r scheduled in slot s at time t

1 isPcdSlotForOsmFound← False
2 isOsmSlotForOsmFound← False
3 if Type(r) = osm then
4 for i in range(a,d) do
5 if Xt

r,si
= lpcd then

6 Xt
r,si
← 1;

7 isPcdSlotForOsmFound← True
8 Break;

9 if isPcdSlotForOsmFound = False then
10 for i in range(a,d) do
11 if Xt

r,si
= losm &

Popularity(ri) < Popularity(r) then
12 Si ← r; Xt

r,si
← 1;

13 isOsmSlotForOsmFound← True
14 Break;

15 if isOsmSlotForOsmFound = False &
isPcdSlotForOsmFound = False then

16 Schedule miss for r.

17 if Type(r) = pcd then
18 for i in range(a,d) do
19 if Xt

r,si
= lpcd & Popularity(ri) < Popularity(r) then

20 Si ← r; Xt
r,si
← 1;

21 isPcdSlotForOsmFound← True
22 Break;

r1 r2 r3 r4 r5 r6 r7 r8

r1 r2 r3 r1 r4 r3 r2 r2

r1 r2 r1 r2 r4 r1 r3 r2

Initial order

Basic broadcast
(no change)

Adaptive broadcast
(real-time scheduling)

Optimal broadcast
(Tile request order
known in advance)

TP0

s0 s1 s2
...

r1 r2 r3 r4 r5 r6 r7 r8

Priority decreases

Fig. 3: Demonstration of considered approaches.

These are individual layer requests for an individual tile, which
we assume for simplicity are divided in such as way that
they can be stored in a single NR-V2X slot. Initially, in the
pre-processing phase, the requests are broadcast in the order
they are stored in the RSU, which may not follow any logical
sequence, until the broadcast period TP . In basic broadcast,
this order remains unchanged. However, in adaptive broadcast,
higher priority tiles are broadcast more frequently, phasing out
less requested ones. The optimal broadcast, theoretically the
most efficient, would require prior knowledge of request order
to minimize schedule misses and TAT. One key distinction
between adaptive and optimal broadcasting is the prevalence of

TABLE II: Delay comparison of different scheduling schemes.

Basic Adaptive Optimal

Direct Hit Tx+Tp1+Tp2 Tx+Tp1+Tp2 Tx+Tp1+Tp2

Hit with wait Tx+Tp1+Tp2+Tb Tx+Tp1+Tp2+Tb NA
Scheduled Hit NA Tx+Tp1+Tp2+Tpr NA
Miss Tx+Tp1+Tp2+Tl Tx+Tp1+Tp2+Tl Tx+Tp1+Tp2+Tl

high-priority tiles. Adaptive broadcasting features fewer high-
priority tiles compared to the optimal approach, as the optimal
pattern is not known beforehand. While adaptive broadcasting
is not entirely optimal, it closely approximates the optimal and
adapts in real-time to request patterns.

E. Comparison Approaches

Here, we compare the basic broadcast, optimal broadcast,
and ABS. To the best of our knowledge, no such methods exist
in the literature at the moment of writing this paper. Hence,
the proposed heuristic solution has been compared with the
optimal solution. The different delays considered for evaluation
are specified in Table II.

• Basic Broadcast: This conventional scheme involves
broadcasting all tiles periodically in the same order, with-
out any replacements in further cycles. A ”direct hit”
occurs when a tile is broadcast just as a vehicle requests
it, ensuring immediate availability. However, the basic
approach does not accommodate ”scheduled hits” (tiles
scheduled between arrival time and deadline), a feature
present in the proposed ABS scheme. The ”hit with wait”
and ”miss” scenarios are similar to the other approaches,
with the former occurring when a tile is broadcast before
the vehicle needs it, and the latter when a tile is unavailable
before the vehicle reaches the location represented by the
tile.

• ABS: This approach described in the Section IV-C, has
an additional ”Scheduled hit” category achieved after an
additional processing delay.

• Optimal Broadcast: The optimal scheme described in
Section IV-A in scheduling would be when we know in
advance the order of requests. Which is why all the hits
are ”Direct Hit”. Even when we know the order in advance
we might not be able to schedule all requests hence the
”miss”.

V. EXPERIMENT SETUP

A dense urban road segment of 1000 × 1000 m2 (refer to
Fig. 4a) has been set up in SUMO3 which allows modeling of
different traffic scenarios. The proposed ABS scheme thrives
when there exists a pattern of non-uniformity in the tile
requests. In our model same as in NR-V2X, a slot is a time
segment for data transmission, lasting 1 ms in numerology
0 [14]. To evaluate this, the entire map (grid) has been
divided into tiles of sizes 10 × 10, 20 × 20, 30 × 30, and
64 × 64. The broadcast period, TP is defined as the time

3https://www.eclipse.org/sumo/



taken for the RSU to broadcast all the tiles. It is given by
TP = number of tiles × number of layers per tile. For an
example, for a grid divided into 10 × 10 tiles having 2 layers
each, the broadcast period would be 200 ms. Fig. 5 shows the
heat map of the requests of various tiles of the grid by different
vehicles for different tile sizes. As it is clear from the figure, the
number of requests for certain tiles is higher when compared
to some other tiles. A trajectory drawn (refer to Fig. 4b) of the
vehicles show the fact that the tiles beyond the road-segment
are seldom requested. This demand analysis conducted helps
us to understand that there are tiles which are more popular
than the others, while some tiles not being requested at all.

(a) An urban road segment sce-
nario created in SUMO.

(b) Mapping of the vehicle trajec-
tories.

Fig. 4: SUMO setup for HD Map tile request generation by
vehicles in an urban road segment.

(a) (10x10) (b) (20x20)

(c) (30x30) (d) (64x64)

Fig. 5: Heat Map generated for different tile sizes.

A. Emulation setup

Our emulation setup built using Python ZMQ library4, fea-
tures a single RSU and a set of vehicles, each operating with
dedicated threads. The RSU runs a broadcasting daemon thread
and another thread for managing requests via worker threads.
Vehicles have a thread for monitoring broadcasts from the RUS
and another for requesting tiles if not found on the broadcast

4https://zeromq.org/languages/python/

TABLE III: Implementation setup parameters

Parameter Description

System Type NR-V2X Mode 1
Scenario Urban intersection
Number of Vehicles 10
Total tile requests 1500
Speed of vehicles 30− 80 KMPH
RSU data rate 100Mbps
Grid area considered 1000× 1000 m2 divided into 10× 10,

20× 20, 30× 30, and 64× 64 tiles.
Number of layers 2 layers each (.osm and .pcd)
Size of .osm layer 2KB
Size of .pcd layer 10KB
Size of tile request 2KB
Vehicle data rate 3− 5 Mbps
Mobility model SUMO based location
Broadcast cycle 200ms (10× 10), 800ms (20× 20),

1800ms (30× 30) and 8192ms (64× 64)

channel. They can run multiple threads by sending concurrent
requests, containing their location and speed, which the RSU
uses to determine tile numbers and decide on broadcasting
schedule. The vehicle traffic data has been taken from SUMO
(as mentioned in Table III), while the channel delays mentioned
in Section III, have been extracted from Cellular-V2X module
of NS-35 [17], to emulate V2I communication. This setup is
available at [18].

VI. EXPERIMENT RESULTS AND ANALYSIS

These below performance metrics collectively help to get
insights into the responsiveness and reliability of the proposed
ABS under varying conditions.

• Hit rate: This is determined by the proportion of requests
that are scheduled and fulfilled prior to their deadlines.

• TAT: This parameter represents the cumulative duration
from the initial request of a tile to its successful reception
by the vehicle, as observed on the broadcast channel.

A. Impact on Hit Rate

Fig. 6 shows the normalized hit rate for Basic, ABS, and
Optimal broadcasting schemes. As the tile size decreases, the
number of tiles to be broadcasted increases, thereby increas-
ing the broadcast period, causing tiles to appear much later
in the channel. This delayed appearance results in a higher
frequency of ”misses” in the Basic approach. However, in case
of ABS scheme, these tiles are scheduled before their respective
deadlines, thereby significantly reducing misses and bringing
performance closer to that of the Optimal broadcast.

B. Impact on TAT

Our emulation setup processed 1500 requests from 10 vehi-
cles to assess TAT values. Basic Broadcast yields TAT values in
the range of seconds, which is too slow for V2X applications.
This inefficiency is due to it’s inability to alter the sequence of
tile requests on the broadcast channel, leading to significantly
higher TAT when a vehicle asks for a tile that has already been

5https://www.nsnam.org/



	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

10x10 20X20 30X30 64X64

No
rm

al
ize

d	
hi
t	r
at
e

Tile	Size

Basic Optimal ABS

Fig. 6: Impact on Hit rate.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

10x10 20x20 30x30 64x64

TA
T	
(in

	S
ec
on

ds
)

Tile	Size

ABS Optimal

Fig. 7: Impact on TAT by varying tile sizes.

	0.7

	0.75

	0.8

	0.85

	0.9

	0.95

	1

20 40 60 80 100

No
rm

al
ize

d	
hi
t	r
at
e

Speed	of	Vehicles(KMPH)

Hit	rate

Fig. 8: Trend in hit rate with change in speeds of the vehicles.

broadcasted. In contrast, ABS achieved a significantly lower
TAT of only 0.5 milliseconds per request on an average for all
tile sizes When dealing with varying tile sizes, TAT decreases as
the tile size reduces as shown in Fig. 7. Additionally, TAT with
ABS is marginally higher compared to the Optimal Broadcast,
which benefits from pre-existing request pattern knowledge, an
aspect less viable in real-world scenarios.

C. Impact of Speed of Vehicles

In Fig. 8, we see that ABS is able to support below 10%
schedule misses for speeds up to 80 KMPH. However, there
is a dip in the hit rate as the speeds all the vehicles in the
scenario go over 100 KMPH. This is primarily due to the
requirement of delivering HD maps of size 1 GB per mile, as
mentioned in [12], to all vehicles moving at speeds exceeding
100 KMPH. Such a scenario demands more bandwidth than
what is currently supported in the setup.

VII. CONCLUSIONS AND FUTURE WORK

We proposed ABS scheme for disseminating HD map data
effectively to vehicles in dense NR V2X environments. An

optimization model elevates the scheduling to an NP-Hard
challenge, paralleling multi-objective scheduling schemes. Em-
ulation results of ABS scheme show promise in reducing sched-
ule misses as much as by 50% compared to the conventional
periodic broadcast and minimizing turn around time per request.
Future work includes enhancing ABS scheme using mini-slot
scheduling to address challenges related to request starvation
for lower priority requests. This technique involves distributing
parts of different tiles within a single slot, offering a potential
solution to improve request handling efficiency.

ACKNOWLEDGEMENT

This work was supported by DST National Mission Inter-
disciplinary Cyber-Physical Systems (NM-ICPS), Technology
Innovation Hub on ”Autonomous Navigation and Data Ac-
quisition Systems: TiHAN Foundations at Indian Institute of
Technology (IIT) Hyderabad”.

REFERENCES
[1] Gamal Elghazaly, Raphaël Frank, Scott Harvey, and Stefan Safko, “High-

definition maps: Comprehensive survey, challenges, and future perspec-
tives”, IEEE Open Journal of Intelligent Transportation Systems, vol. 4,
pp. 527–550, 2023.

[2] “The evolution of the here hd live map at daimler”, https://www.here.
com/learn/blog/the-evolution-of-the-hd-live-map.

[3] ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Local Dynamic Map (LDM); Rationale for
and guidance on standardization”, Tech. Rep. TR 102 863, ETSI, 2011.

[4] “Navigation data standard NDS”, https://nds-association.org/.
[5] “Opendrive”, https://www.asam.net/standards/detail/opendrive/.
[6] AECC, “Operational Behavior of a High Definition Map Application”,

Tech. Rep., Automative Edge Computing Consortium, 2020.
[7] Mario H. Castañeda Garcia, Alejandro Molina-Galan, Mate Boban, Javier

Gozalvez, Baldomero Coll-Perales, Taylan Şahin, and Apostolos Kousari-
das, “A tutorial on 5g nr v2x communications”, IEEE Communications
Surveys Tutorials, vol. 23, no. 3, pp. 1972–2026, 2021.

[8] Hakima Khelifi, Senlin Luo, Boubakr Nour, Akrem Sellami, Hassine
Moungla, and Farid Naı̈t-Abdesselam, “An optimized proactive caching
scheme based on mobility prediction for vehicular networks”, in IEEE
GLOBECOM, 2018, pp. 1–6.

[9] Soohyun Park, Chanyoung Park, Soyi Jung, Minseok Choi, and
Joongheon Kim, “Age-of-information aware contents caching and dis-
tribution for connected vehicles”, arXiv:2210.01536, 2022.

[10] Fangfei Wang, Dong Guan, Long Zhao, and Kan Zheng, “Cooperative
v2x for high definition map transmission based on vehicle mobility”, in
IEEE VTC, 2019, pp. 1–5.

[11] Xianzhe Xu, Shuai Gao, and Meixia Tao, “Distributed online caching
for high-definition maps in autonomous driving systems”, IEEE Wireless
Communications Letters, vol. 10, no. 7, pp. 1390–1394, 2021.

[12] Qixia Hao, Jiaxin Zeng, Xiaobo Zhou, and Tie Qiu, “Freshness-aware
high definition map caching with distributed mamab in internet of
vehicles”, in Springer-Verlag, 2022, p. 273–284.

[13] Athanasios Kanavos, Sokratis Barmpounakis, and Alexandros Kaloxylos,
“An adaptive scheduling mechanism optimized for v2n communications
over future cellular networks”, in MDPI Telecom, 2023, vol. 4, pp. 378–
392.

[14] Kenya Sato, Takahiro Koita, and Akira Fukuda, “Broadcasted location-
aware data cache for vehicular application”, Springer EURASIP Journal
on Embedded Systems, pp. 1–11, 2007.

[15] Stephen A. Cook, “The complexity of theorem-proving procedures”, in
ACM Symposium on Theory of Computing, 1971, p. 151–158.

[16] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein, Introduction to algorithms, MIT press, 2022.

[17] Fabian Eckermann, Moritz Kahlert, and Christian Wietfeld, “Performance
analysis of C-V2X mode 4 communication introducing an open-source
C-V2X simulator”, in IEEE VTC, 2019.

[18] “Hd map dissemination emulation setup”, https://github.com/
bugAssassin007/HDMapDisseminator/tree/master.


