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Abstract—In this study, we investigate the flexible many-
to-one mapping of central units (CUs) to compute servers
in 5G Radio Access Network (5G-RAN) using two-sided
matching theory considering spatio-temporal tidal traffic
patterns. Initially, we use a well known bin-packing heuris-
tic known as First Fit Decreasing (FFD) to obtain sub-
optimal CU to compute server mapping. To address the
traffic heterogeneity, we formulate a novel strategy of dy-
namic reassignment (known as Machine Admission Game
or MAG) among a set of CUs and compute server in each
mapping interval, using analytical approaches of coalitional
game theory and college admission game. To solve this, we
devise a modified version of the classical Deferred Accep-
tance Algorithm (DAA) satisfying the resource constraints
of compute servers. We assess the benefit of the proposed
matching theory framework with baseline FFD in terms of
compute resource multiplexing gain (i.e., number of active
servers in the CU pool) and the number of relocations
incurred in the dynamic reassignment of candidate CUs.
We observe that the proposed MAG framework though
consumes nearly 6.8% and 4.1% of more servers than
baseline FFD, it reduces the number of relocations by
33.9% on weekdays and 25.7% on weekends as compared
to FFD.

I. INTRODUCTION

In a traditional mobile network deployment, the RF,

amplifier, and signal processing components are linked

as a fixed allocation of 1 : 1 (one-to-one) mapping

between signal processing functions and hardware in a

close proximity at the cell site. Techniques to separate

signal processing functions from antenna and power

amplifier are being studied in the literature [1] [2].

Next Generation Radio Access Network (NG-RAN,

a.k.a. 5G-RAN) is a competitive cellular network ar-

chitecture which aims to provide significant opportunis-

tic gains related to infrastructure wide cost elements

(CAPEX), maintenance, energy, and operational cost

savings (OPEX) [3]. Existing cellular base station func-

tionalities are segregated into cheaper and smaller foot-

print remote radio units (DUs) present at cell sites

and compute-intensive baseband functionalities known

as Central Units (CUs) that are moved to CU pool

(commonly referred as BBU pool in C-RAN literature)

where cloud computing and virtualization mechanisms

are used as the key enabling technologies. With the

flexibility in the segregation and deployment of RAN

functions between CU and DU, NG-RAN envisioned

in 5G architecture provides a substantial advantage to

cellular operators as well as to mobile subscribers [4].

CU is accepted as a generic term after 3GPP Rel-14

technical specification which supports the concept of

flexible centralization of base station functionality. With

Network Functions Virtualization (NFV) being chosen as

a potential choice to implement CU, NG-RAN enables

dynamic coordination among cells which are distributed

across geographical locations.

A. Background & Motivation

The end-users within the coverage of a typical DU

have different traffic demand pattern following the di-

urnal tendency of human beings. In general, the traffic

demands at DU are highly uncorrelated over time, which

means that all cell sites do not experience peak traffic

hours at the same time [5]. Therefore, the computational

resource requirements of CU in terms of CPU cores,

memory, I/O, network bandwidth, and disk space vary

dynamically w.r.t. traffic conditions [6]. Henceforth, we

refer this dynamic CU resource requirement as the

compute load or simply load. Fig. 1 shows the NG-

RAN architecture considered in our work in compliant

with the reference architecture of ETSI NFV. Each CU

serves a designated DU and connects to the core network

(5G-Core). From an implementation perspective, CU

can be realized using abstraction mechanisms such as

containers (i.e., Docker/LXC) or hypervisors (i.e.,VM)

on a shared infrastructure layer in the data center [7].

Typically, multiple virtualized CU instances are deployed

on a single compute server because of the isolation

flexibility of cloud platform, thereby creating a many-to-

one deployment relationship between CU and compute

RAU
High-Speed 

Internal Switch

Node 1

CU CUCU

CU CUCU

CU CUCU

Node 2

Node M

DU 1

DU 2

DU N

Cloud Data Center (CU pool)

Fig. 1: Programmable & Virtualized Computing Center for CUs
in NG-RAN.



server. This many-to-one deployment of CUs to compute

server is known as “consolidation” of CUs. An allocation

matrix At can potentially represent the consolidation at

time t where each row corresponds to CU and each col-

umn represents the servers. An entry At(i, j) is 1 if CU i

is hosted on server j, else 0. When traffic demand rises or

falls, the allocation matrix can be re-formed accordingly.

Assuming a scenario without virtualized CUs, we might

need to allocate one compute server for one CU i.e., 1 : 1
case which underutilizes the computational resources of

the data center. This inefficient 1 : 1 allocation of CU to

compute server increases the CAPEX and OPEX of the

mobile network operator.

Most of the time in a day, the sum of all individ-

ual offered compute load at CUs from each of the

corresponding DU will be less than the sum of their

peak loads at any given time instant. For example, the

allocation matrix at time t may not be a good allocation

at time (t + 1). Hence, the compute loads of different

CUs hosted on the same compute server may sometimes

overload beyond server capacity, thereby degrading the

Quality of Service (QoS) for end-users. By intelligently

relocating CU instances across available compute servers

in the CU pool, suitable mitigation plan can be devised

in response to server overload situation to minimize

the service disruption. This phenomenon is known as

“relocation” of candidate CUs. In a given interval,

known as the periodicity of CU clustering or epoch, the

consolidation and relocation of CUs (which results in

the re-formation of allocation matrix) significantly lower

the net computational load on a cloud platform, saving

energy by switching-off idle compute servers. Relocation

of virtual resources (i.e., VMs or containers) incurs

additional computational resource overhead because it

involves iteratively writing all the memory copy opera-

tions and transfers over a communication network from

one server to another server. Therefore, the softwarized

and virtualized CU instance relocations must be triggered

in a controlled manner with consideration of additional

overhead cost to model the performance accurately.

In this work, our research goal is to adaptively consoli-

date a set of CU compute loads to compute servers in the

CU pool so as to improve the overall resource utilization

of the cloud platform using two-sided matching theory.

The proposed solution to this optimal allocation problem

is a dynamic CU-compute server mapping framework

which automatically adapts to traffic heterogeneity from

DUs. The proposed solution minimizes the service dis-

ruption by carefully planning the relocations decisions

for CUs, thereby improving the QoS for the end-users.

B. Contributions

We present three main contributions in developing

the matching-theory framework for efficient and scalable

CU-compute server mapping for 5G-RAN. They are

summarized as follows.

1) By using analytical approaches from two-sided

matching theory, we propose a light-weight and

scalable Machine Admission Game (MAG frame-

work), a novel way of reassigning multiple CU

compute loads among available server resources.

This striking analogy is a variant of popular Col-

lege Admission Game model [8] discussed in game

theory literature. In this game formulation, the set

of players i.e., CU compute loads imitate jobs of

various sizes and the second set of players i.e.,

compute servers imitate the machines that process

jobs.

2) We derive a preferential classification of players,

a rank-ordered list, which enables players of one

set to express priorities among all the possible

matches in the other set. This ranking is decided

based on the individual player’s choice of getting

matched to its counterpart maximizing a known,

often conflicting objective function.

3) We devise a modified version of classical Deferred

Acceptance Algorithm (DAA) [8] for solving the

proposed MAG framework and assess its perfor-

mance with respect to cloud resource multiplexing

gain and additional overhead incurred in dynamic

CU relocation.

The rest of the paper is organized as follows. We

highlight the related works in Section II. In Section III,

we present the system model. In Section IV, we present

the proposed two-sided matching theory framework. Ex-

perimental setup and performance results are presented

in Section V. Finally, concluding remarks are given in

Section VI.

II. RELATED WORK

Both consolidation and relocation mechanisms are

extremely vital for efficient resource planning in 5G

RAN. Although RAN resource management (C-RAN)

in a data center is still in its infancy, few of the

existing resource management works are based only on

the “bin packing” approach or stochastic modeling to

computational resource consolidation process. In [9], the

authors presented a multi-dimensional Markov model to

evaluate the statistical multiplexing gain (denotes the

extent to which the resources can be shared across

multiple parties) of Virtual Base Station (VBS) pools

considering the user session level traffic dynamics. Al-

though this model considers the delay-tolerant traffic and

expressions for blocking probability, the performance

w.r.t. spatio-temporal traffic fluctuations are not factored

in the gain calculation. In [10], the authors proposed a

bin packing formulation to the BBU to VM packing on

an iterative approach to minimize the total number of

active BBUs. However, they did not consider the rele-

vance of BBU relocations in accordance with tidal traffic

variation. The authors in [11] proposed a bin packing so-

lution to consolidate BBUs, which minimizes the energy



consumption without factoring the BBU (VM) migration

scenario as described before. On similar notion, authors

in [12] highlights a dynamic DU reassignment algorithm

(synonymous with the concept of CU migration) which

minimizes the total number of active servers in the

cloud platform by considering the spatio-temporal traffic

variation, but without factoring relocation overhead. In

this current work, these limitations are overcome by

factoring the relocation overhead in addition to CU

consolidation.

III. SYSTEM MODEL

Let D = {d1, d2, . . . , D} be the finite set of D DUs,

C = {c1, c2, . . . , C} be the finite set of C CUs, and S =
{s1, s2, . . . , S} as the finite set of S compute servers in

the data center, respectively. Since each DU traffic is

served by its corresponding CU, we have D = C. Let

U = {u1, u2, . . . , U} be the set of U users served by

D DUs. As shown in Fig. 2, the deployment of DUs is

assumed as per Matern hard core point process type II

(MHCPP II) and the deployment of UEs as per Poisson

Point Process (PPP) [13]. Suppose, spatial distribution

of DUs and UEs be ΦDU and ΦUE , respectively, where

{ΦUE ,ΦDU} ∈ R
2. The coverage regions of DUs are

plotted and depicted by voronoi tessellation.

IV. MATCHING THEORY FRAMEWORK

Two-sided matching theory is a Nobel prize-winning

framework, originally studied in economics, but can also

be applied to several engineering disciplines, especially

in solving wireless resource allocation problems [14].

In general, basic framework of resource allocation prob-

lem involves resources and users. Depending upon the

context, the resources can be viewed from different

abstractions such as compute resource, power, time-

frequency chunks, eNodeBs, etc. Users can be smart-

phones, wireless stations, etc. A matching is a mapping

between users and resources given the individual player’s

preferences, often having conflicting objectives. As per

player’s quota limit, the matching game can be :-

• One-to-One (Stable Marriage Model)

• Many-to-One (College Admission Game Model)

• Many-to-Many (Consultant Firm Matching Model)
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Fig. 2: Spatial Distribution of UEs and DUs as per MHCPP II.

In the following subsection, we briefly introduce

Many-to-One College Admission Game and the viable

solution framework to solve this class of matching game.

A. College Admission Game

The College Admissions Game consists of two disjoint

sets of players: a set of students M and a set of colleges

N . Each student m ∈ M has a strict, preference relation

over the set N . Similarly, each college n ∈ N has a

strict preference relation over M . Every college m ∈ M

has a finite quota of maximum allowable students it can

take. Let us denote this quota as qc ∈ Z
+. The solution to

this game is essentially a many-to-one stable assignment

from students to colleges.

1) Game Model & Deferred Acceptance Algorithm

(DAA): Gale and Shapley [8] first studied this game

where they proposed a Deferred Acceptance Algorithm

(DAA) to find stable matching between colleges and

students. This algorithm is popularly known as the Gale-

Shapley (GS) algorithm and the overall procedure is

pictorially summarized in Fig. 3. In student proposing

version of this algorithm, students first propose to their

favorite colleges. If the college has not fulfilled its quota

and has at least one vacant seat to admit the student,

it accepts the student’s proposal. If no more seat is

available for this student and student is least preferred

among all the students that are currently matched to

this college, then college rejects the proposal. In case,

the student deems fit than other matched student to the

same college, the college offers admission to the student

applicant and unmatch from the previous acceptance,

which is least preferred. However, this model cannot

be applied directly to the context of CU-compute server

mapping due to the challenges discussed as follows.

2) Challenges for DAA in CU-compute server Map-

ping: In many-to-one College Admission game model,

each college is bounded by some fixed quota up to

which it can accept students. The players in student set

are matched to exactly one college and a college can

admit multiple students, not violating its quota limit.

Although DAA is proved to be an efficient and stable

algorithm to solve this type of game model, it cannot be

applied directly to our CU-compute server assignment

scenario in NG-RAN since we cannot define the quota

for servers in terms of the number of compute loads to be

processed. Also, compute loads are heterogeneous that

vary as a function of space and time. Each server has

Fig. 3: Deferred Acceptance Algorithm.



a fixed capacity in terms of compute resources. Hence,

it can accommodate multiple compute loads until their

total sum remains lower than the rated server capacity.

Moreover, traffic heterogeneity from DUs makes this

matching problem very challenging to solve.

B. Machine Admission Game (MAG)

To address the special case of CU-compute server

assignment problem in NG-RAN, we propose a novel

strategy of Machine Admission Game (MAG) model

based on a two-sided many-to-one matching framework.

The players are divided into two distinct sets. They are:

• Load set consisting of heterogeneous compute loads

from Candidate CUs (i.e., RelocationCandidates)

• Set of compute servers of the CU pool (i.e., non-

overloaded servers)

1) Rank Ordering via Preference Relation: A pref-

erence relation ≻ is a strict, complete binary relation

over the set of all players where players of one set

rank another player of other set satisfying individual

incentives of being matched. In the game formulation

of MAG, each compute server derives a strict ranking

over all the acceptable CUs whose compute load is

less than the host server capacity. Similarly, each CU

will prefer a server whose available compute resources

are sufficient enough to serve all its users covered by

the corresponding DU. Let r(s) be the available virtual

compute resources of server s and s(c) be the size of the

compute load at CU c. Additional relevant notations are

summarized in Table I. For a server s ∈ S , we define

the preference relation ≻s of compute server s over set

of CU compute loads such that for any two CU loads

c1, c2 ∈ C,

c1 ≻s c2 ⇔ s(c1) ≥ s(c2) (1)

Similarly, for a CU compute load c ∈ C, we define the

preference relation ≻c of CU load c over set of compute

servers such that for any two servers s1, s2 ∈ S ,

s1 ≻c s2 ⇔ r(s1) ≥ r(s2) (2)

Eqn. 1 ensures that server always prefers CU loads that

are the best fit to the available compute resources. Eqn. 2

ensures that CU loads prefer the servers whose available

compute resources are high enough following a worst fit

assumption from compute load set. To summarize, CU

prefers a server based on the worst fit scheme of avail-

able compute resources and a server prefers a CU based

TABLE I. Notations for Machine Admission Game.

Symbol Definition

S Set of all compute servers

C Set of all CU compute loads

s(c) Size of CU load c, c ∈ C

l(s) Load on server s, s ∈ S

peak(s) Peak capacity of server s

pref(c) Preference list of CU load c

pref(s) Preference list of server s

on the best fit scheme of available compute resources.

The proposed MAG, by using a modified version of

DAA, efficiently matches CUs to servers, satisfying the

player’s conflicting objectives as mentioned above.

Algorithm 1 : Modified DAA for MAG

INPUT: Previous allocation matrix At−1.
OUTPUT: Best possible allocation matrix At at time t.

1: For each CU load c, c ∈ C, Status(c)← “unmatched”
2: procedure MACHINEADMISSIONGAME

3: while ∃c ∈ C and status of load c is “unmatched” do
4: ptr ← First element of list pref(c)
5: while ptr ≤ length of pref(c) do
6: s′ ← Most Preferred server of load c at ptr
7: if s′ can serve c then
8: Match load c to server s′

9: Status(c)← “matched”
10: Break loop & proceed to next free load
11: else
12: Get candidate loads c′ ∈ C s.t. c ≻s′ c

′

13: if s′ can serve c by rejecting loads then
14: Assign load c to server s′

15: Status(c)← “matched”
16: ∀c′ ∈ C, Status(c′)← “unmatched”
17: Break loop & proceed to next free load
18: else
19: Reject load c
20: Go to next preferred server in ptr
21: end if
22: end if
23: end while
24: end while
25: Return all the matched CU-compute server pairs, At

26: end procedure

2) Modified DAA for MAG: The proposed algorithm

starts with two distinct sets of players: a set of CU loads

C and a set of servers S . Initially, all the players of both

the sets are initialized with unmatched (free) status. We

consider |C| = |S|, i.e., we have ensured to allocate |S|
servers in the worst case which corresponds to the fully-

loaded cell sites in case of traditional cellular network,

but in the realistic case, the count of servers is much less

than |S| due to spatio-temporal traffic inhomogeneity

of mobile subscribers. Each CU load c ∈ C starts by

proposing to its most preferred server s ∈ S based on

the rank-order computed by the CU over all the elements

of set S . If server s has enough available computational

resource to meet the requirement of CU load c, then

s accepts the proposal from c. If server s does not

possess sufficient resource and unable to hold the current

proposal offer, two cases may arise.

• Case 1: If all the loads in the current matching list

of server s are more preferable than CU load c, then

s rejects the proposal from CU load c.

• Case 2: If server s has less preferable compute

loads than CU load c in its matching list, then two

subcases may arise.



TABLE II. Time Complexity Analysis.
Test Input FFD MAG

Best Case O(|C|log|C|) O(|C|)
Average Case O(|C|2) O(|CS|)
Worst Case O(|C|2) O(|CS|)

– Sub case 2.1: By removing all or some least

preferred loads than c from its current matching

list (candidate loads for rejection), if server s

acquires sufficient resources to serve j, then

unmatch those candidate loads from server s

and match load c to server s.

– Sub case 2.2: By removing candidate loads, if

server s still does not have enough resources

to serve CU load c, then it rejects c.

The above propose-reject sequence is repeated for

all the unmatched CU loads until they are matched to

compute servers. Note that some of the servers may have

an empty matching list as there are no outstanding loads

to be processed by the algorithm. Those compute servers

are declared as idle/inactive and are potential candidates

to be switched off to save energy and compute resources.

3) Time Complexity Analysis: Assuming |C|, the

number of CU compute loads and |S|, the number of

server hosts (|S| ≪ |C|), the time complexity analysis

for FFD and MAG schemes are summarized in Table II.

FFD requires all CU loads to be sorted in non-increasing

fashion, thus taking O(|C|log|C|) time in the best case.

However, MAG does not perform any CU reassignment

in the best case if there are no overloaded clusters, but

it has to scan all the CU loads which take O(|C|).
Every CU load may demand one server with O(|C|2)
number of comparisons in the worst case in FFD. In

MAG, each CU load has to propose at most |S| servers

in the preference list requiring time O(|CS|). In FFD

average case, considering
|S|
2

clusters are overloaded, the

number of comparisons are at most O(|C|2). In MAG,

the average case time complexity is O(|CS|) as each

CU load may need to propose at least
|S|
2

servers.

V. PERFORMANCE RESULTS

Considering the downlink transmission processing in

a typical NG-RAN environment, we generate spatio-

temporal varying DU workloads by a modeling function

highlighted in [15]. In this model, a Gaussian Mixture

Model (GMM) is used to model the behavior of spatio-

temporal traffic variation and cell-specific DU loads at a

given instant of time which is exponentially distributed

in the spatial domain. Based on this, we obtained two

extensive datasets for synthetic DU workloads for both

weekday and weekend traffic profiles spanning 24 hours.

User traffic generated during a day is divided into three

segments. They are “Low Load” from 12AM to 8AM,

“Medium Load” from 8AM to 12 Noon and 8PM to

12AM, “High Load” from 12 Noon to 8PM. With a

sampling interval of 6 minutes, we generated 10 samples

per hour and a total of 240 samples for 24 hours.

TABLE III. Simulation Parameters
Parameter Value

Number of DUs [100 1000]

Sampling Interval 6 Minutes

Total Traffic Capture Duration 24 Hours

Total Generated Samples 240

Traffic profiles Weekday & Weekend

Network Region Urban

DU workload Range Normalized in [0,1]

Peak DU Load 1 (100%)

Spatial load distribution Exponential

Time-varying rate parameter Gaussian Mixture Model

To capture the geographical randomness and large-scale

spatial deployment scenario, we ran the simulations from

200 DUs to 1000 DUs. The system-level simulations

with modified DAA are performed in Intel x86, eight-

core, Ubuntu Linux 64-bit distribution with 2.4 GHz pro-

cessor and each independent trial is accompanied with

15 random seeds. We have evaluated the performance

of the proposed MAG framework w.r.t (a) resource

multiplexing gain, (b) relocation overhead. Table III

briefly summarizes the simulation parameters.

Note that, First Fit decreasing (FFD) is a well-known

bin-packing heuristic algorithm most commonly used

in data center environments to map VMs to servers.

In [11] and [16], the authors have also used this packing

algorithm to implement the CU consolidation process.

Authors in [12] highlights an extended version of FFD

(known as DRA), that performs the consolidation and

relocation of CUs. Hence, in this work, we have utilized

FFD and DRA as the baseline schemes to showcase

various trade-off features and efficacy of our proposed

MAG framework.

A. Resource Multiplexing Gain

We assess the performance of MAG framework in

terms of compute resource multiplexing gain i.e., the

metric denoting the number of active servers in the

cloud platform. MAG framework with modified DAA

is compared with baseline FFD and DRA schemes.

Figs. 4 and 5 show the required number of active servers

in a time scale of 24 hours of the day from 00:00

hours up to 23:59 hours for weekday and weekend

traffic profiles, respectively. With respect to one-to-one

CU to server mapping scheme, the server savings in

MAG is nearly 86%. The savings offered by MAG in

closely aligned with savings obtained by the FFD scheme

but overestimates by 6.8% and 4.1% on weekday and

weekend, respectively.

B. Relocation Overhead

Although the number of active servers required in

MAG and DRA is slightly higher than that in FFD,

the relocation overhead in FFD is higher compared to

MAG. We evaluated the relocation overhead for all the

mapping schemes in Figs. 6 and 7 for weekday and

weekend, respectively. For a weekday traffic profile,

MAG incurs 33.9% fewer relocations than FFD and
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44% fewer relocations than DRA. For a weekend traffic

profile, MAG incurs 25.7% fewer relocations than FFD

and 36.33% fewer relocations than DRA.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a two-sided matching theory

framework known as Machine Admission Game (MAG)

for dynamic many-to-one mapping between CUs and

compute servers in NG-RAN. Compared to the existing

algorithms of bin packing and DRA, MAG excels in

green computing aspects (i.e., minimizing number of

active servers) of 5G-RAN as well as reduces the total

number of CU relocations to ensure better QoS for the

end-users. In future, we aim to incorporate a workload

predictor to MAG framework and provisioning of on-

demand reservation of servers in order to study and

analyze the compute resource usage.
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