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Abstract—Reliable communication in disaster-hit areas is crucial
for effective rescue and relief operations. This has encouraged
the emergence of innovative, infrastructure-less, and ad hoc com-
munication frameworks with the aim to keep Disaster Networks
(DiNets) operational. However, emerging DiNet frameworks are
still in their nascent stages. A vital challenge in ensuring seamless
communication in harsh post-disaster scenarios is the design of
robust routing algorithms. In this work, we elucidate the various
constraints placed by post-disaster scenarios upon the design of
routing mechanisms. We then implement an AllJoyn based DiNet
prototype and gather real-time network data in an experimental
site that resembles a disaster-hit zone. We subject gathered
empirical data to Regression Analysis, create network models, and
derive relationships between network parameters. The real-time
regression equations of network parameter relationships serve as
constraints in a high-level Mixed Integer Nonlinear Programming
model named ODiN. The objective of ODiN is to offer optimal
solutions to routing and next-hop relay selection in post-disaster
scenarios. We demonstrate a significant reduction in convergence
time while maintaining high accuracy through the use of ODiN.

I. INTRODUCTION

Natural and man-made disasters not only cause immense loss

of life and property but they also adversely impact ecology.

Thus, development and deployment of resilient communication

technologies, to mitigate the impact of disasters and to ensure

prompt disaster response, is one of the pillars of the Sendai

Framework under the aegis of United Nations Office for

Disaster Risk Reduction [1].

Disaster networks (DiNets) are specifically designed to cater

to critical and time-sensitive operations in disaster situations.

DiNets are proximity centric, self-organizing, and decentral-

ized which makes them resilient to failure in the face of

challenging constraints posed by post-disaster scenarios.

Disaster events create unique and rather extreme ambient

conditions for communication networks to be operational,

which renders a top-down application of broad generaliza-

tions counter-productive and prone to failure. We resolve this

challenge by making use Regression Analysis, a sub-set of

Machine Learning techniques, to model empirical data from a

DiNet prototype.

We make the following major contributions in this work.

• We describe the features of DiNets followed by the con-

straints experienced in routing in a post-disaster scenario.

• We implement an AllJoyn based DiNet prototype and

conduct real-time experiments in a location which resem-

bles a disaster-hit zone.

• We carry out Regression Analysis of empirical results to

identify relationships between network parameters.

• We formulate a Mixed Integer Non-linear Programming

(MINLP) model called ODiN that offers an optimal

solution specific to the challenges in routing in DiNets.

• We then use the regression equations from the network

model as constraints in ODiN formulation.

• Finally, ODiN performance is validated in terms of net-

work throughput and Convergence Time Reduced (CTR).

Thus, the proposed ODiN model harnesses the real-time data

from a post-disaster site to optimize routing in a DiNet. This

novel approach ensures that the unique ambient conditions

in the disaster-hit zone are adequately reflected in DiNet

routing. To the best of our knowledge, no work on disaster

and emergency networks has made use of Regression Analysis

to optimize network performance.

II. COMMUNICATION IN POST-DISASTER SCENARIOS

In the aftermath of a severe disaster event, the existing

communication infrastructure is disrupted, leaving the affected

areas completely cut-off from the rest of the world. Thus,

disaster mitigation efforts and time-critical rescue operations

demand reliable communication solutions that require minimal

configuration and are cost-effective. Disaster and emergency

communication systems require a robust operation, interoper-

ability, and continuity of communications.

A. Challenges in Conventional Disaster Networks

Traditionally, continuity of communication in disaster situ-

ations is achieved through alternative wireless technologies

such as satellite phones, VSAT, Ham radio, etc. Recent de-

velopments have led to the merging of conventional modes

of communication with technologies including 802.11 Wi-Fi,

802.16 WiMAX, etc. However, these technologies suffer from

a wide variety of issues, a few of which are elucidated below.

The conventional disaster communication systems involve

expensive hardware, high installation times, and costly com-

munication protocols often using satellite uplink/downlink.

Limited interoperability between devices such as Push-To-Talk

communications and VSAT/Sat Phones does not facilitate ease

of data collection. Conventional systems are often deployed

using theoretical disaster mobility models, which are predi-

cated on assumed events and roles [2]. At times, a disaster

sensor network may be available, but it has to be deployed

before the disaster strikes, which is an expensive proposition.



The existing technologies also suffer from limited access and

connectivity, overwhelmed services due to over-subscription,

expensive equipment that has logistical constraints, and most

importantly, limited information gathering and sharing tools.

Besides, these networks are fragile and susceptible to frequent

disruptions in the first few days of being set up [3], which are

the most crucial days for rescue operations.

B. Next Generation Disaster Networks

Next-generation of DiNets includes ad hoc wireless and oppor-

tunistic wireless networks that facilitate real-time information

exchange and efficient collaboration between rescue-personnel

that are within each other’s transmission proximity. Due to

the increasing penetration of smartphones globally, there is a

special emphasis on DiNets leveraging D2D communication.

Frameworks such as AllJoyn [4], paradigms such as DTN [5],

and technologies such as WiFi P2P [6] are being currently

experimented to implement DiNets. It is not surprising that

Android has released a Wi-Fi Direct (P2P) API for Android 4.0

and above to facilitate the development of disaster Proximity

Centric Networks (PCNs) [7].

A PCN relies solely on the spatial proximity of devices that

form a part of the network and wireless technologies that facil-

itate communication between devices in close proximity e.g.,

Bluetooth, Wi-Fi Direct, etc. Thus, disaster PCNs overcome

the need for seamless connectivity to the Internet, which is a

remarkable shift from conventional disaster network designs

and applications. Another benefit of employing a PCN is that

latency inherent in data shared via the Internet will not be

experienced in a disaster PCN.

C. Routing Constraints in a Disaster Scenario

Disaster hit zones are invariably characterized by extreme

weather conditions, obstacles created by collapsed infras-

tructure, and harsh terrain which cause signal strength to

be heavily attenuated. To facilitate a resilient and robust

operation of a DiNet, SINR and RSSI received at a node must

primarily determine next-hop choices for data transmission [8].

However, standard implementations of the traditional routing

protocols which operate in the network layer, such as AODV

or OLSR, seldom use SINR based information for the selection

of next-hop node.

Thus, we contend that in disaster scenarios, signal strength and

signal quality must primarily determine routing algorithms.

In this work, we primarily focus on the signal strength and

the impact of interference on transmissions by utilizing the

empirically observed SINR values to formulate constraints for

the ODiN optimal routing model.

Other important challenges to routing in post-disaster environ-

ments are listed below.

1) Signal strength and the impact of interference on trans-

missions quantified by SINR.

2) Harness the availability of multiple radios.

3) Robustness and resilience, e.g., recovery from a failed

data transmission due to link disruption.

4) Energy efficient protocols, as device battery is a scarce

resource in disaster scenarios.

5) Interoperability, i.e., ability to rout over heterogeneous

devices and RATs.

6) Maximum number of intermediate nodes that don’t ad-

versely affect network performance.

7) Node specific priority to data uplink or downlink.

8) The trade-off between data/link redundancy and energy

consumption and space requirement.

9) Hostile and inaccessible terrain. The impact of terrain

on signal strength can significantly shape the next-hop

choice.

We attempt to address several of these challenges in the

proposed ODiN model.

Fig. 1: AllJoyn Dinet prototype.

III. ALLJOYN DISASTER NETWORK PROTOTYPE

AllJoyn [9] is an open-source framework that is agnostic

to underlying radio access technology and facilitates the

integration of heterogeneous client-devices. AllJoyn performs

services such as participant device discovery, attachment,

session management, etc., between participant mobile devices.

A detailed discussion on AllJoyn routing and implementation

is presented in [4].

A. Experiment Setup and Deployment Site

We implement a 5-node AllJoyn DiNet illustrated in Figure 1.

A toy model of routing in a dynamic PCN with mobile nodes

is presented in Figure 2 (a). The four laptops run on the

Ubuntu 16.04 LTS operating system while the Google Nexus 5

smartphone runs on Android KitKat 4.4.4. The laptops serve

as stationary nodes stationed at different locations while the

smartphone is mobile and transmits data to the other nodes.

The DiNet is realized through a Wi-fi ad hoc network with

Extended Basic Service Set Identity (ESSID) “DisaNet”, with

the help of Independent Basic Service Set or IBSS mode of

Wi-Fi in 2.4GHz over the same Wi-Fi channel.

Due to the presence of rubble and collapsed structures,

disaster-hit zones suffer severely from multi-path fading as

multiple copies of a transmission signal interfere at the receiver

[10]. For this reason, we choose an under-construction building

site for DiNet deployment, as shown in Figure 2 (b). The

presence of semi-constructed structures and obstacles such as

rubble mounds on the pathways etc., creates some semblance

of a disaster-hit zone.

The mobile node transmits files of three sizes viz., 1MB,

4MB, and 10 MB, at spatial intervals of 5m. The rationale is



(a) Routing Toy Model. (b) Experiment sites.

Fig. 2: AllJoyn DiNet Deployment

to replicate real-world disaster data which typically includes

three major file types viz., images of low pixel-density, high-

resolution images, and low-resolution videos, and high-quality

videos.

B. Preliminary Analysis of Network Data

We gather a variety of real-time network data for the DiNet

prototype, including network throughput, latency, and signal

strength experienced by the mobile node. We observe that

DiNet performance is heavily dependent on the signal strength,

which varies substantially with distance. The peculiar chal-

lenges of disaster environment, such as obstacles and collapsed

structures, make the impact of distance on received signal

strength even more strong and somewhat erratic. For example,

while small files (1MB) are transmitted as long a connection

exists, larger files (4MB and 10MB) experience transmission

failures when signal strength drops below -67dBm.

Another aspect is power consumption, the rate of which is

accelerated as inter-nodal distance increases. Distance has an

extremely adverse impact on battery life in disaster scenarios.

This can be understood by the fact that to transmit a 1MB

file, the battery drain increases by a factor of 60 at 75m
as compared to that at 5m. Likewise, the end-to-end packet

latency increases by a factor of 42 at the two inter-nodal

distances.

We subject the gathered empirical data to regression analysis

to determine the relationship between inter-nodal distance and

network parameters.

IV. REGRESSION ANALYSIS OF NETWORK DATA

Regression Analysis is a statistical tool and a sub-set of

Machine Learning techniques which are used to ascertain the

relationship between tangible or intangible variables in a sys-

tem [11]. In any scientific experiment one or more independent

variables are manipulated, and the corresponding change in a

dependent variable is observed. A Regression Model (RM) is

used to explore whether a statistically significant relationship

exists between a dependent variable and one or independent

variables. This makes Regression Analysis a desirable tool not

only for modeling and fitting data but also for causal analysis.

Our goal is to determine a relationship between network

parameters from the empirical DiNet data. Thus, we consider

Linear and Polynomial Regression techniques which assess the

statistical significance of the relationship in terms of p-values

(p-val). They also offer insights into the relationship between

network parameters by stating the degree to which variation

in response variable can be justified due to the change in the

independent variable through the R-sq of the RM.

Relationships between network parameters may be non-linear,

and Polynomial Regression successfully meets this require-

ment by fitting non-linear network data on a curve. Finally,

P-values and R-Sq are not feasible in non-linear regression

techniques, which makes them unsuitable for our objectives.

P-value or the level of risk of a model is signified by α,

and the normally accepted P-value is α = 0.05. However,

there has been a greater debate on the use of P-values in

determining the accuracy of the models [12] and to assuage

these concerns we consider α = 0.001, which offers highly

statistically significant models and substantially reduces the

probability of misinterpretation.

Having identified that the inter-nodal distance is the pri-

mary determinant of network performance in terms of signal

strength, throughput, delay, and battery-life, we carry out

linear and polynomial regression analysis with inter-nodal

distance as the predictor variable (X), and network metrics as

the response variables (Y). We select RMs with P − value ≤
0.001 and the highest R-Sq values as they produce regression

equations that best explain the relationship between response

and predictor network variables. The Network Parameter Re-

lationships (NPRs) are presented in Table I.

TABLE I: Regression Analysis of DiNet Data.

Parameter (Y) R-sq Regression Equation∗

Signal Strength 86.94 Y = - 47.93 - 0.5973 X + 0.002923 X
2

Throughput† 88.92 Y = 17.56 - 0.4790 X + 0.003370 X
2

Battery Drain† 87.97 Y = 0.05925 - 0.004742 X + 0.000129 X
2

Delay† 79.34 Y = 1185 - 124.7 X + 4.302 X
2

∗ Inter-nodal distance is the predictor (X) and network parameter is the response (Y).
† Parameter values considered are for 1MB file.

Regression Models for all network parameters have high R-sq

values, which demonstrate a significant impact of inter-nodal

distance on network performance. The NPR equations are

derived from empirical data and represent the actual ambient

environment of a disaster network. We argue that using NPR

equations in network optimization will not only reflect the

network conditions in the optimization model but also reduce

convergence-times of optimal results [13]. DiNets are time-

critical as real-time information is crucial to relief and rescue



efforts. In such circumstances, reduced convergence-times in

network optimization are highly preferable.

A DiNet optimization may involve several parameters viz.,

signal strength, network capacity, energy efficiency, delay

tolerance, and reliability in data transmission. As discussed in

SubsectionII-C, in this work, we focus on signal strength using

the empirically derived NPR of signal strength in network

optimization.

V. OPTIMAL ROUTING FOR DISASTER NETWORKS

We now formulate a high-level MINLP model called ODiN

to offer an optimal solution to multi-hop routing in disaster

networks and ensure maximal throughput. The ODiN model is

proposed with the objective of maximizing network capacity

through a routing mechanism predicated on signal strength,

which makes use of a theoretical SINR constraint. Thereafter,

we replace the theoretical constraint of signal strength with

the empirically derived NPR equation of signal strength from

Table I. We then contrast the performance of two versions

of ODIN. While formulating ODiN, several other constraints

specific to disaster scenarios have also been considered.

In addition, ODiN also makes two more considerations rele-

vant to disaster networks :

• Spectrum is scarce and should be reused.

• The constraints should be applied to new ad hoc links

created through Wi-Fi Direct, Bluetooth, etc.

A. Theoretical ODiN Model (ODiNT )

To maximize the overall throughput in the disaster network,

we choose optimal ad hoc (Wi-Fi direct, Bluetooth, etc.) links

and allocate the unlicensed spectrum chunk effectively to these

links and tune the uplink power for these links. We assume

that the DiNet nodes are deployed in a random topology, and

at least one of the nodes is mobile. Let M denote the set of

nodes deployed in the DiNet. Let I = { i1, i2, . . . , in } be

the set of relay (intermediate) nodes and J = { j1, j2, . . . , jn
} be the set of mobile (moving) nodes. Let Dij be an ad hoc

Wi-Fi direct link between nodes i and j, and C = { c1, c2,

. . . , cn } denote the set of available unlicensed channel in the

5GHz band. The objective of maximizing the throughput of the

DiNet through optimal routing is expressed in Equation (1),

where B represents the DiNet bandwidth. 1

max(B × log(1 + SINRij) (1)

A binary variable, Xij whose value is 1 if i is connected to

j through the ad-hoc link, else 0, where i ∈ I , j ∈ J .
{

Xij = 1 for ∀i ∈ I, ∀j ∈ J

Xij = 0 else

1An alternate optimization goal can be the minimization of the maximum
power (min(max(pz

i
)) consumed by ad hoc links with the constraints

identical to that of ODiN.

The upper bound on the maximum number of relay nodes

permitted by the DiNet is given by,
∑

j∈J

Xij ≤ α ∀i ∈ I (2)

The packet flow between relay node i and the next-hop node

j should be non-negative,

Xs(i, j) > 0 (3)

We assume that Wi-Fi operates in the orthogonal frequency

division multiple access (OFDMA) mode (i.e., 802.11 ax), and

possesses scheduling capability in the given transmission time

(i.e., TXOP). Through the new concept of Basic Service Set

(BSS) Coloring, 802.11ax ensures an efficient spatial reuse of

the spectrum similar to that in cellular LTE [14]. We place a

limit on the maximum number of ad-hoc Wi-Fi direct links in

a given TXOP.
∑

i∈I

∑

j∈J

Xij = β ∀j ∈ J (4)

The values of α and β can be fine-tuned as per network

requirements. The binary variable Qz
ij is 1 when relay node

i and mobile node j communicate through the spectrum z,

and 0 otherwise, where i ∈ I , j ∈ J and z ∈ Z. Here, η

denotes the maximum number of spectrum chunks which can

be allocated to each Wi-Fi direct link.
{

Qz
ij = 1 for ∀i ∈ I, ∀j ∈ J

Qz
ij = 0 else

∑

z∈Z

Qz
ij ≤ η ×Xij ∀i ∈ I, ∀j ∈ J (5)

Further, each node in the DiNet may have multiple radios. In

equations below, umin and umax represent the minimum and

maximum number of radios installed on a node, respectively.
∑

Xi ≥ umin (6)

∑

Xi ≤ umax (7)

A binary variable, Lz
i whose value is 1 if node i is using

spectrum z for Wi-Fi direct link else 0, where i ∈ I , z ∈ Z .
{

Lz
i = 1 for ∀i ∈ I, ∀z ∈ Z

Lz
i = 0 else

(8)

Lz
i is set to be 1 if relay node i is using the spectrum z. The

Equation (8) is ensured by Equation (9).

Lz
i = Qz

ij ∀i ∈ I, ∀j ∈ J, ∀z ∈ Z (9)

Equation (10) guarantees that the normalized power emitted

by relay node i in spectrum z is 0 when not being utilized by

node i.

pzi ≤ Lz
i ∀i ∈ I, ∀z ∈ Z (10)

Pw
max denotes the maximum power of a transmitting node

(e.g., WI-Fi AP/hotspot). Upon solving the ODiN formulation,
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Fig. 3: Evaluation of ODiN

transmission power of a relay node i in a spectrum chunk z

is calculated as pzi × Pw
max, where the power value (in watts)

lies in the range of 0 ≤ pzi ≤ 1. The below equation restricts

the number of uplink connections a mobile node can establish

and the transmit power for the uplink tranmission is in the

range of 0 ≤ pzi ≤ 0.1
∑

i∈I

Xij ≤ n ∀j ∈ J (11)

The L.H.S. of Equation (12) is the SINRij received at the

mobile node j due to transmissions from relay node i, and N0

represents the system noise. To ensure a reliable connection,

the SINRij of each Wi-Fi direct link is maintained above a

predefined threshold λj , which may vary across mobile nodes.

Inf × (1−Qz
ij) +Gijp

z
iP

w
max

No +
∑

w∈Wk

GwjP
i
max +

∑

i
′∈I\i

G
i
′

j
pz
i
′Pw

max

≥ λj

∀i ∈ I, j ∈ J, z ∈ Z

(12)

Here, Wk is the set of all nodes using the spectrum z in a given

TXOP duration. Similarly, Gwj is the channel gain from the

other DiNet node w to j (operating on the same spectrum

chunk), Gij is the channel gain from i to j.

The use of Inf × (1 − Qz
ij) ensures that if Qz

ij = 0, then

Inf × (1−Qz
ij) amounts to a very large value, which allows

for the expression to be conveniently ignored. Through the

virtual infinite value Inf , Equation (12) ensures that all relay

nodes provide a minimum SINRth to a particular mobile

node. ODiN implementation will be impractical without the

SINR consideration through Inf . The Equation (12) can be

rewritten as follows,

SINRij ≤
Inf × (1−Qz

ij) +Gijp
z
iP

w
max

No +
∑

w∈Wk

GwjP
i
max +

∑

i
′∈I\i

G
i
′

j
pz
i
′Pw

max

∀i ∈ I, ∀j ∈ J, ∀z ∈ Z

(13)

Finally, the ODiN capacity optimization model is formulated

as follows,

max(Blog(1 + SINRij) s.t., (2), (4), (5), (9), (10), (11), (13).

B. Regression Inspired ODiN (ODiNNPR)

We propose a novel approach wherein we replace the theoret-

ical constraints in an optimization model with Network Per-

formance Relationships derived through Regression Analysis

of empirically observed data. In the current implementation

of ODiN, we replace the computationally intensive theoretical

SINR constraint in (13) with the regression equation for SINR

presented in Table I in the following equation.

max(SINRij)

Equation (14) reflects the NPR between inter-nodal distance

and SINR.

SINRij = −47.93− 0.5973Xij − 0.002923X2

ij (14)

Finally, the regression inspired ODiN model is formulated as,

max(SINRij) s.t., (2), (4), (5), (9), (10), (11), (14).

By solving ODiNNPR, we achieve the following:



• Optimal relay node selection & reduced convergence time

through regression analysis.

• Optimal assignment of spectrum z to each established ad

hoc link, especially the Wi-Fi direct links.

• Minimization of the power emitted by a mobile node.

• Leveraging empirical data to guarantee signal quality

above threshold for each mobile node being served by

the relay nodes.

VI. SIMULATION, RESULTS, AND EVALUATION

ODiNT and ODiNNPR are applied to the AllJoyn DiNet

prototype, and optimal solutions are generated by solving

the models with the help of GAMS CPLEX solver through

its branch and bound framework [15]. The output of GAMS

solver serves as input to the system model simulated on MAT-

LAB, which visualizes signal strength and throughput. ODiN

is a high-level generic model that considers several factors,

such as transmission power, optimal spectrum splitting, etc.

Since the objective of the experiment is to validate ODiN,

we focus on network capacity and fix other values in the

model as they were in the DiNet implementation. For example,

Maximum Transmission Power for the nodes was set at

22dBm, in line with device configurations. Some constraints

were relaxed, e.g., only one user was assumed to be active

at a given time, so there was no splitting of the spectrum.

However, the optimal model is fully capable of addressing

realistic conditions.

The experimental values from DiNet implementation are

evaluated against the theoretical results generated from the

two ODiN variants and presented in Figure 3. We consider

throughput for the three file sizes transmitted in the ex-

periments. Likewise, Convergence Time (CT) taken to solve

for the optimal next-hop relay is calculated for ODiNT and

ODiNNPR, and the CTs for both are compared. It can be

discerned from Figure 3 that ODiNNPR outperforms ODiNT .

When compared to ODiNT , the average % convergence time

reduction (CTR) by ODiNNPR for 1MB, 4MB, and 10MB

files is 69.94%, 60.36%, 55.55%, respectively.

A cost-benefit analysis reveals that despite remarkable CTR

performance by ODiNNPR, it is also 18.2%, 21.93%, and

34.29% more accurate than ODiNT on an average for 1MB,

4MB, and 10MB files, respectively. If we consider the

deviation from experimentally observed DiNet throughput,

ODiNNPR shows an average deviation of 11.68% for 4MB

file transmissions, which is tolerable.

Another aspect is the impact of distance on the Convergence

Time of ODIN models. As observed in empirical results

earlier, the simulation results demonstrate a constant reduction

in Throughput as the inter-nodal distance increases. However,

as the distance increases no corresponding increase in CT is

observed in the proposed ODIN models. This implies that

the computational resources required for optimization remain

almost constant, and the energy consumption does not rise

significantly with distance. This is ideal for a disaster network

scenario where low CTs for next node selection and minimal

battery drain is desirable.

We observe that the use of regression equations as constraints

significantly improves network optimization in disaster scenar-

ios, in terms of both, Convergence Time and Accuracy.

VII. CONCLUSION AND FUTURE WORK

Introducing constraints derived from Regression Analysis of

real-time network data in the ODiN optimization model sub-

stantially reduces the convergence time while maximizing

network capacity. Optimal results offered by ODiN are consis-

tent with the empirical results, which lends credibility to the

proposed model and the novel approach of using empirically

derived regression equations as constraints.
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