On Placement of LAA/LTE-U Base Stations in Heterogeneous Wireless Networks

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

ICDCN, Varanasi, India 6th January 2018

- Anand M. Baswade¹
- Shashi Kiran M R²
- Bheemarjuna Reddy Tamma¹

1

• Antony Franklin A¹

Indian Institute of Technology-Hyderabad¹, PES Institute of Technology-Bengaluru²

Outline

- Introduction to LAA/LTE-U
- Motivation
- System Model of Proposed Scheme
- Objective
- Performance Evaluation
- Conclusions
- References

Abbreviations

- LAA Licensed Assisted Access
- LTE-U Long Term Evolution in Unlicensed Spectrum
- BS Base Station
- AP Access Point
- SINR Signal to Interference plus Noise Ratio
- EDT Energy Detection Threshold
- CSAT Carrier Sense Adaptive Transmission
- LBT Listen Before Talk
- EDT Energy Detection Threshold

Introduction

- There is an ever increasing demand for mobile data [1].
- Most of the traffic demand is from indoor scenarios [2].

Figure 1: Growth in Mobile Traffic

Motivation

Figure 2: SINR Distribution with Macro BS

- In large buildings like apartments, malls, cricket stadiums, etc., the data rate of the users drop drastically compared to outdoor data rates.
- Building dimensions: 48m x 48m x 3m
- **Position of Macro BS:** 500m away from first sub-region in both horizontal and vertical directions.

Indoor Scenario

- As most of the users consuming more data are indoor users, the low SNR in the indoor regions (high penetration losses) is a very critical problem that needs to be addressed.
- One way to solve this problem is by the use of small and low power BS.
- Optimal placement of these BS will lead to maximum spectral efficiency.
- Licensed Spectrum is limited and costly.
- Limited Licensed Spectrum leads to increase in data traffic demand.
- Use of Unlicensed Spectrum is considered as one of the promising solutions.

Coexistence of LTE in Unlicensed Spectrum

- Achieved by sharing with other technologies like Wi-Fi, if the LAA/LTE-U BS is in the EDT region of Wi-Fi.
- LTE follows ON and OFF cycle [3] so that Wi-Fi can get access to channel in OFF time (CSAT).
- This mechanism is possible only in those countries where LBT is not mandatory (like India and USA) [4].
- Licensed spectrum is used for sending control signals.
- Carrier Aggregation helps to aggregate Licensed and Unlicensed spectrum.

System Model

121 122 123 126 127 128 129 130 131 111 109 110 111 111 111 111 1115 116 117 118 119 110 111 97 98 99 100 102 103 104 105 106 107 10 97 98 99 100 102 103 104 105 106 107 10 97 98 99 100 102 103 104 105 106 107 10 97 98 99 100 107 103 104 105 106 107 10 97 98 99 100 107 103 104 105 106 107 10 05 06 07 76 77 78 79 101 02 03 04 04 04 04		133	134	135	1.30	292	250	139	140	141	142	143	144
109 110 111 113 113 116 117 110 <td></td> <td>121</td> <td>122</td> <td>123</td> <td>1.24</td> <td>124</td> <td>120</td> <td>127</td> <td>128</td> <td>129</td> <td>130</td> <td>131</td> <td>132</td>		121	122	123	1.24	124	120	127	128	129	130	131	132
97 98 99 100 102 103 104 105 106 107 107 05 06 07 08 09 90 91 92 93 94 95 96 73 74 75 76 77 78 79 96 91 92 93 94 95 96 61 62 63 64 65 66 97 98 90 91 92 93 94 95 96 61 62 63 64 65 66 97 98 90 70 71 7 49 50 51 52 53 54 98 98 96 98 98 96 98 98 96 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 9		109	110	111	200	113	3.14	115	116	117	110	119	120
ab region ab a		97	90	99	100	3030	102	103	104	105	106	107	100
Ab-region -73 74 75 76 77 78 79 98 61 62 63 64 65 66 98 98 70 71 7 61 62 63 64 65 66 98 98 70 71 7 49 50 51 52 53 54 98 98 56 59 6 37 36 39 40 41 42 98 98 46 47 4 25 26 27 28 29 30 31 32 33 34 35 3		85	86	67	60	69	90	91	92	93	94	95	96
61 62 63 64 65 66 98 99 70 71 7 49 50 51 52 53 54 98 98 56 59 6 37 30 39 40 41 42 98 98 46 47 4 25 26 27 28 29 30 31 32 33 34 35 3	ib-region	73	74	75	76	77	78	79	00	01	62	03	04
Map SD S1 S2 S3 S4 Map S5 S9 6 37 36 39 40 41 42 Map Map 46 47 4 25 26 27 28 29 30 31 32 33 34 35 3	Number -	61	62	63	64	65	66	02	00	See.	70	71	72
37 30 39 40 41 42 300 46 47 4 25 20 27 28 29 30 31 32 33 34 35 3		49	50	51	52	53	54	22	56	Set.	50	59	60
25 26 27 20 29 30 31 32 33 34 35 3		37	30	39	40	41	42	143		1990	46	47	40
		25	26	27	28	29	30	31	32	22	34	35	36
13 14 15 16 17 18 19 20 21 22 23 2		13	14	15	16	17	18	19	20	21	22	23	24
1 2 3 4 5 6 7 8 9 10 11 1		3	2	э	4	5	6	7	0	9	10	11	12

Figure 3: System model with building having 16 rooms with one Macro BS outside the building and Wi-Fi APs inside the building with energy detection region.

Channel Model

• The path loss (in dB) between Macro BS located outside the building and the indoor sub-regions of the building [5] is

$$PL_{Macro} = 49 + 40 \log_{10} \frac{D}{1000} + 30 \log_{10} F + K\sigma^{l}$$

- The path loss in dB between LAA BS transmitting in unlicensed spectrum and sub-region is $PL^u_{Femto}=20\log_{10}f+30\log_{10}d+N\sigma^u-28$
- The path loss in dB between LAA BS transmitting in licensed spectrum and sub-region is

$$PL^{l}_{Femto} = 37 + 30 \log_{10} d + N \sigma^{l} + 18.3 v^{rac{v+2}{v+1} - 0.46}$$

• The path loss between Wi-Fi AP and the sub-region remains the same as LAA BS in Unlicensed Spectrum

Objective

• Minimum SINR threshold in each sub-region for both Licensed and Unlicensed Spectrum with minimum number of Femto BS (MinLF).

• Maximize the minimum SINR of Licensed Spectrum in the indoor area by controlling the transmission Power (MinLPower).

Challenges

• Coverage of Unlicensed Spectrum is less compared to that of Licensed Spectrum.

• LTE in Unlicensed Spectrum is operating at 5 GHz which is very high compared to Licensed Spectrum (400 MHz to 2.6 GHz).

 Penetration Losses through walls and floors are high for Unlicensed Spectrum.

MinLF Model

- Placing the LAA/LTE-U BS based on Unlicensed Coverage.
- Transmission of Unlicensed Spectrum at P^u_{max} , to minimize the number of LAA/LTE-U BS.
- Licensed Spectrum coverage is better compared to Unlicensed Spectrum and if it is transmitted at maximum Power P_{max}^l , there will be co-tire interference.
- To improve SINR in Licensed Spectrum transmission has to be done at lower powers (MinLPower model).

Notation	Definition
S_i	Set of all indoor sub-regions
S_c	Set of all sub-regions where Wi-Fi AP is located
x_a	1 if Femto is placed at sub-region a, 0 otherwise
y ja	1 if j^{th} sub-region of the building is associated
83675°	with the Femto located at sub-region $a, 0$ other-
	wise
g_{ja}^u	Unlicensed channel gain due to Femto BS be-
	tween sub-region j and Femto BS at a
g_{jc}^w	Channel gain between Wi-Fi AP in sub-region
	c and the sub-region j
P_{max}^u	Maximum transmission power of unlicensed spec-
	trum
P_{WiFi}	Transmission power of Wi-Fi APs
N_o	System noise
$SINR_{th}^{u}$	Minimum required SINR of unlicensed spectrum
	in each sub-region
w_{jc}	1 if jth sub-region is outside energy detection re-
	gion of Wi-Fi AP at sub-region c in the building,
	0 if it is inside
EDT_c	energy detection region of Wi-Fi located in sub-
	region c

Table 1: Glossary of MinLF Model

• Objective is to minimize the number of LAA/LTE-U BS,

$$LF_{min} = min\sum_{a\in S_i} x_a$$
 ,

• To make sure that each sub-region is associated with only one Femto BS,

$$\sum_{a\in S_i}y_{ja}=1orall j\in S_i \qquad \qquad y_{ja}-x_a\leq 0orall j,a\in S_i$$

• To place at most one LAA/LTE-U BS in EDT region of Wi-Fi AP if necessary,

$$\sum_{d \in EDT_c} x_d \leq 1, orall c \in S_c$$

- The following are the interferences of a sub-region associated with a Femto BS,
 - Interference from other Femto BS
 - Interference from Wi-Fi APs

- Interference from other Femto BSs (Foreign Femto) :-
 - If Foreign Femto lies inside the EDT of any Wi-Fi AP
 - Interference from Femto during LAA/LTE-U ON cycle (Neglected)
 - Interference from Wi-Fi AP during LAA/LTE-U OFF cycle (almost same as that during LAA/LTE-U ON cycle due to similar characteristics and is considered for entire cycle).
 - If Foreign Femto lies outside EDT of any Wi-Fi AP, then interference

from this BS exists for the entire cycle ($w_{\mathbf{h}}$ used).

- Interference from Wi-Fi APs (Z_{ca} used) :-
 - If Home Femto lies inside the EDT of Wi-Fi AP
 - No interference from this Wi-Fi AP.
 - If Home Femto lies outside the EDT of Wi-Fi AP
 - Interference from these Wi-Fi APs is considered.

- To maintain the $SINR_{th}^u$ in all the sub-regions, $Inf * (1 - y_{ja}) + g_{ja}^u P_{max}^u x_a$ $\overline{N_o + \sum_{b \in S_i \setminus a} g_{jb}^u P_{max}^u x_b w_b} + \sum_{c \in S_c} g_{cj}^w P_{wifi} Z_{ca} \ge SINR_{th}^u; \forall j, a \in S_i$
- To find out the sub-regions inside the EDT region of Wi-Fi AP,

$$Z_{ca} = egin{cases} 0, & ext{if}, a \in EDT_c \ 1, & otherwise \end{cases} a \in S_i; c \in Sc \qquad w_b = egin{cases} 1, & ext{if} \ b
otin EDT_c; orall c \in S_c \ 0, & otherwise \end{cases}$$

- The formulation of MinLF Optimization Problem is Mixed Integer Linear Programming (MILP).
- It is solved using CPLEX solver in GAMS [6].
- MinLF model provides the optimal locations of LAA/LTE-U BS with respect to Unlicensed spectrum and connectivity of sub-regions in the building.

MinLPower Model (For Licensed Spectrum)

- After optimal placing of LAA/LTE-U BSs w.r.t Unlicensed Spectrum, the power control in Licensed Spectrum is necessary.
- Maximizing the minimum SINR to achieve the following,
 - Boosting the SINR in indoor sub-regions by increasing the minimum SINR in the building to the extent possible.
 - Power saving by finding optimal transmission powers.

Objective

Notation	Definition
g_{ja}^{l}	Licensed channel gain due to Femto BS between sub-region j and Femto BS at a
G_{je}	Channel gain between sub-region j and Macro Base Station outside the building
P_{max}^l	Maximum transmission power in licensed spec- trum
P_{min}^l	Minimum transmission power in licensed spec- trum
$SINR_{th}^{l}$	Minimum SINR in each sub-region
P_a^l	Optimized transmission power of Femto BS present in sub-region a
$SINR_{j}^{l}$	SINR of licensed spectrum in sub-region j which is associated with Femto BS located in sub- region a
P _{macro}	Transmission power of Macro BS present outside the building

Table 2: Glossary of MinLPower Model

- Objective function is $maximize(min(SINR_{i}^{l})); orall j \in S_{i}$
- SINR of licensed spectrum in each sub-region,

$$SINR_j^l = rac{g_{ja}^l P_a^l x_a y_{ja}}{N_o + \sum\limits_{b \in S_i ackslash a} g_{jb}^l P_a^l x_b + \sum\limits_{e \in M} G_{je} P_{macro}}; orall j, a \in S_i$$

• Transmission power constraint,

$$P_{min}^{l} \leq P_{a}^{l} \leq P_{max}^{l}; orall a \in S_{i}$$

• To ensure $SINR_{th}^l$ in each sub-region,

$$rac{g_{ja}^lP_a^lw_ay_{ja}}{N_o+\sum\limits_{b\in S_iackslash a}g_{jb}^lP_a^lw_b+\sum\limits_{e\in M}G_{je}P_{macro}}\geq SINR_{th}^l;orall j,a\in S_a$$

- The above optimization formulation is MINLP which cannot be solved easily using the traditional MINLP algorithms.
- Used Genetic Algorithm to solve and find the transmission power.

Genetic Algorithm

- Performs Mutation and Crossing Over of population set to form a set of available solutions.
- Uses Fitness Value to select the best possible solution.
- Fitness function is maximizing the minimum value of SINR in the building.
- It is sub-optimal because the solution varies with the population set.

Performance Evaluation

133	134	135	130	137	130	139	140	141	142	143	144
121	122	123	124	125	120	127	128	129	130	131	132
109	110	111	332	113	Att.	115	116	117	118	119	120
97	98	99	100	101	102	103	104	105	106	107	108
85	86	87	88	89	90	91	92	93	94	95	96
73	74	75	76	77	78	79	(80)	81	82	83	84
61	62	63	64	65	66	<u>(</u>)	68	(dd)	70	71	72
49	50	51	52	53	54	180	130	St.	58	59	60
37	38	39	40	41	42	(43)	(44)	142.	46	47	48
25	26	27	28	29	30	31	32	33	34	35	36
13	14	15	16	17	18	19	20	21	22	23	24
1	2	3	4	5	6	7	8	9	10	11	12

- Used GAMS CPLEX solver to solve MinLF model.
- Used GA toolbox in MATLAB to solve MinPower model.

Performance Evaluation

Parameter	Value
Building dimensions	$48 \text{ m} \times 48 \text{ m} \times 3 \text{ m}$
Room dimensions	$12 \text{ m} \times 12 \text{ m} \times 3 \text{ m}$
Sub-region dimension	$4 \text{ m} \times 4 \text{ m} \times 3 \text{ m}$
Number of Rooms	16
Number of inner Sub-regions	144
$SINR_{Th}^{l}$ (MinLF method)	-2 dB
$SINR_{Th}^{u}$ (MinLF method)	4 dB
Wall loss (Licensed)	10 dB
Wall loss (Unlicensed)	13 dB
Macro transmit power	46 dBm (39.8 W)
(P_{macro})	26 80
P_{max}^l	20 dBm (0.1 W)
P_{max}^u	20 dBm (0.1 W)
P_{min}^l	10 dBm
Macro BS Height	35 m
P_{Wi-Fi}	20 dBm (0.1 W)
EDT	-62 dBm

Table 3:Simulation Parameters

- Wi-Fi APs at sub-region 68 and 113.
- Solve MinLF model to obtain the optimal locations of LAA/LTE-U BS and connectivity of sub-regions.
- Solve MinLPower to obtain Licensed transmission Powers for each BS.

Figure 11: SINR (in dB) in Unlicensed Spectrum • LAA BS at (7,55,126)

- $SINR^u_{th}$ (i.e., 4dB) is maintained everywhere.
- It is observed that inside EDT of Wi-Fi there has to be a LAA/LTE-U BS so that it shares the channel and the Interference reduces.

Figure 12: Connectivity of sub-regions • By just changing the positions of LAA/LTE-U BS the $SINR_{th}^{u}$ (i.e., 4dB) is maintained everywhere.

Figure 13: SINR (in dB) Licensed Spectrum with MinLPower Scheme

- $SINR^l_{th}$ (i.e., -2 dB) is maintained everywhere
- Sub-region **103** has the least SINR (**2.807** with Power Control and **2.782** without Power Control)

ICDCN '18, 6th January 2018, Varanasi, India

Figure 14: SINR (in dB) Licensed Spectrum with MaxLPower

Figure 15: SINR CDF of Licensed and Unlicensed carriers

Maxi Power 50 MinLPower Kilo Joules) 5 day per required 20 Energy 0 2 dB 4 dB 5 dB 0 dB SINR threshold (in dB) in unlicensed spectrum

Figure 16: Energy required with MaxLPower and MinLPower schemes

 Minimum number of LAA BSs required still remains the same (i.e., 3) till 4 dB and increases to 6 for 5 dB.

$SINR^u_{th}$	$0 \mathrm{dB}$	2 dB	4 dB	5 dB
No. of BSs	3	3	3	6
BS sub-	3,67,	32,68,	7,55,	41,69,88
region no.	112	138	126	92,115,126
Tx power	13.67,	13.26,	10.00,	18.26,18.75
(dBm) in	12.57,	15.03,	11.06,	16.93,19.99
licensed	18.32	19.81	11.02	16.94, 18.14
% Energy	63.58	50.42	88.19	32.39
Savings				

Table 5: Results with Two Wi-Fi APs at sub-region 68 and 113

Figure 17: SINR CDF of Licensed Spectrum with MaxLPower and MinLPower Schemes

By varying number of Wi-Fi APs beyond 2

No. of Wi-Fi APs	Co-ordinates of APs (Sub- region No.)	LAA BSs re- quired	Co-ordinates of Femtos (Sub-region No.)
0	-	3	58,74,102
2	68,113	3	3,67,112
4	54,60,85,91	5	42,70,75,79,141
6	21,54,60, 85,91,124	8	9,40,43,47, 77,99,105,136
8	15,21,54,60 85,91,124,130	10	10,27,31,55,71 86,90,118,121,126
10	$\begin{array}{c} 15,\!21,\!24,\!54,\!60 \\ 85,\!91,\!121,\!124,\!130 \end{array}$	10	$\begin{array}{c} 10,\!27,\!31,\!55,\!59 \\ 74,\!90,\!109,\!114,\!118 \end{array}$

Table 6: Varying number of Wi-Fi AP

 It is observed that one Femto BS has to be placed inside EDT region of each Wi-Fi AP.

By increasing Wi-Fi APs, the number of Femto BS also increases.

- Greater than or equal to the number of Wi-Fi APs present.
- Greater than Wi-Fi APs due to the increase in interference with the increase in number of Femto BS.

By varying number of Rooms inside the building

Figure 19: Number of LAA BS by varying number of rooms

- Varying from 4x4 rooms (16 rooms) to 7x7 rooms (49 rooms) with step size of 1x1 room for different values of $SINR_{th}^{u}$.
- It is observed that by increasing the building dimensions and increasing $SINR_{th}^{u}$, the number of LAA BS required also increases.

Conclusions

- Guaranteed SINR in Licensed and Unlicensed Spectrum.
- Optimal Placement with respect to Unlicensed Spectrum.
- Power Control of Licensed Spectrum maximized the minimum SINR.
- Power Control also leaded to Energy Saving.
- Simulation results showed the efficiency of the proposed scheme.

References

 [1] Cisco White Paper. Feb 2017. Cisco Visual Networking Index: global mobile data traffic forecast update, 2016-2021. (Feb 2017).

[2] Ericsson. June 2017. Ericsson mobility report. (June 2017).

[3] Qualcomm White Paper. 2015. LTE in Unlicensed Spectrum:

Harmonious Coexistence with Wi-Fi. (2015).

[4] 3GPP. 2015. TSGRAN; Study on Licensed-Assisted Access to Unlicensed Spectrum. Technical Report TR 36.889 V13.0.0.

References

[5] Kwanghun Han, Youngkyu Choi, Dongmyoung Kim, Minsoo Na, Sunghyun Choi, and Kiyoung Han. 2009. Optimization of femtocell network configuration under interference constraints. In WiOPT 2009. IEEE.

[6] GAMS. 2017. GAMS online. (2017). Retrieved March 2017 from http://www.gams.com/

This work is supported by the project Converged Cloud Communication Technologies, MeitY, Govt. of India

Ministry of Electronics and Information Technology Government of India

Any Questions?

Contact:

Shashi Kiran M R

shashikiran.161996@gmail.com

Ph: +91 8123276407

Thank You!