Designing Infrastructure-less Disaster Networks by Leveraging the AllJoyn Framework

Srikant Manas Kala, Vanlin Sathya, **Suhel Sajjan Magdum**, Tulja Vamshi Kiran Buyakar, Hatim Lokhandwala, and Bheemarjuna Reddy Tamma

> Networked Wireless Systems (NeWS) Lab Dept. of Computer Science and Engineering Indian Institute of Technology Hyderabad, INDIA

An International Workshop on Emergency Response Technologies and Services (EmeRTeS) ICDCN 2019 7th January 2019

Introduction and Objective

- 2 AllJoyn Framework, Features and Key Components
- 3 DiNet App
- 4 Single-Hop Topology and Field Experiment
- 5 Multi-Hop Topology
- 6 Results and Analysis
- Conclusions and Future Work

- Rise in global warming, the accelerated pace of climate change, and intense seismic activity, the frequency of natural disasters is increasing.
- Disaster-hit zones is often completely or partially damaged.
- Need infrastructure less framework for communication in these scenarios, like AllJoyn.

Objective

Design a basic AllJoyn application (DiNet App) capable of reliable file exchange between devices in proximity.

AllJoyn Framework

- An open-source framework designed by Allseen Alliance.
- Potential to be the platform for next-generation proximity centric disaster network.
- Designed for automatic discovery and communication between mobile devices.
- P2P Infrastructure-less.

- Discover
- Identify
- Control
- Manage
- Interoperate
- Adapt
- Span

DISCOVER nearby devices

IDENTIFY service ruuning on those devices

CONTROL AND MANAGE devices near and far

MANAGE remote and local

ΔΠΔΡΤ to devices coming and going

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SPAN diverse transports

Figure : Alljoyn Features

SECURE against bad actors

Secure

э 5/19

Key Components

- AllJoyn Router
- AllJoyn App
- AllJoyn Bus

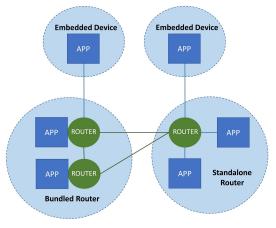


Figure : Key Components

イロン 不同 とくほう イロン

Ξ.

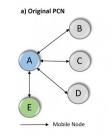
• Advantages of AllJoyn:

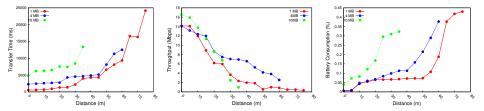
- Open Source framework.
- Automatic device discovery and service advertisement mechanism
- Allows dynamic configuration of the network.
- Platform independant.
- $\bullet\,$ Can use C, C++, Java for developing applications.
- Provides greater security (Simple Authentication and Security Layer (SASL)) by allowing access at the granularity of application-to-application communication.

- AllJoyn provides basic chat application.
- Modified the chat application to file transfer application (DiNet).
- Used ubuntu as a platform and C++ language for development.
- SCons (software construction) is used for generating the executables. Command at server side: ./filetransfer s -f test.jpg Command at client side: ./filetransfer c -t
- Analysed the performance of AllJoyn prototype in terms of end-to-end latency, throughput, signal strength, and battery consumption.
- Highlighted challenges in Multi-Hop scenario.

Single-Hop Scenario

- All Joyn performs participant equipment discovery and attachment, session management and data transfer over a single hop between participant mobile devices.
- An advertising device (AD) initiates an AllJoyn PCN by creating a channel, which is a data sharing session in AllJoyn terminology.
- The mobile devices in its proximity receive the advertisement and may latch on to the channel to share data with the AD.

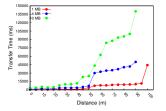


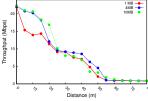

Figure : Single Hop Topology

Field Experiment for Single-Hop Topology

- Sender is sending 1, 4 and 10 MB file.
- Receiver is moving away from sender.
- The network metrics observed at every 5m interval are the Transfer Time (TT) of each file, Signal Strength, and Throughput.
- Considered 2 scenarios: HIS (High Interference Scenario) and LIS (Low Interference Scenario).

Figure : Topology for experiment




Figure : Transfer Time vs Inter-node distance (1, 4, 10 MB file transfer)

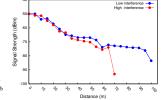

Figure : Throughput vs Inter-node distance (1, 4, 10 MB file transfer)

Figure : Battery Consumption vs Inter-node distance (1, 4, 10 MB file transfer)

- 4 MB file transfer fails beyond 60 meters and 10MB file transfer fails beyond 35 meters.
- As file size increases transfer time increases.
- Battery consumption is high for large files.

Figure : Transfer Time vs Inter-node distance (1, 4, 10 MB file transfer)

Figure : Throughput vs Inter-node distance (1, 4, 10 MB file transfer)

Figure : Signal Strength vs Inter-node distance (1, 4, 10 MB file transfer)

- 4 and 10MB file transfer fails beyond 90 meters and 1MB file transfer fails beyond 100 meters.
- Transfer time is less and throughput is more for LIS than HIS.

Multi-Hop Scenario

- However, a mobile device may move to a location which is beyond the direct transmission range of AD.
- A direct single-hop communication between the AD and PD(Participating Device) is necessary.
- Extended Proximity.

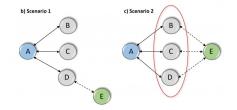


Figure : Multi-Hop Topology

- Implemented an AllJoyn based DiNet application.
- Conducted field experiments to test the reliability and robustness of AllJoyn in two interference scenarios.
- Demonstrated the challenges of multi-hop routing in an AllJoyn PCN (Proximity Centric Network).
- Introduced the concepts of extended proximity.
- Support for multi-hop routing lacking in AllJoyn.
- Devise an optimal routing model for disaster network and build the app which will support multi-hop routing.

Acknowledgement

This work was supported by the project M2Smart: Smart Cities for Emerging Countries based on Sensing, Network and Big Data Analysis of Multimodal Regional Transport System, JST/JICA SATREPS, Japan.

References

- Teruo Higashino, Hirozumi Yamaguchi, Akihito Hiromori, Akira Uchiyama, and Takaaki Umedu. Re-thinking: Design and development of mobility aware applications in smart and connected communities. In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), IEEE, 2018.
- allseenalliance. The AllJoyn Framework, url=https://allseenalliance.org/developers/learn/architecture, 2015.
- Yufeng Wang, Li Wei, Qun Jin, and Jianhua Ma. Alljoyn based direct proximity service development: Overview and prototype. In Computational Science and Engineering (CSE), 2014 IEEE 17th International Conference on, IEEE, 2014.
- Junseok Kwak, Jae-Hwan Jin, and Myung-Joon Lee. A mobile application for information sharing and collaboration among co-located people. In Information Technology and Computer Science, 2015.

伺 ト く ヨ ト く ヨ ト

References

- Hatim Lokhandwala, Srikant Manas Kala, and Bheemarjuna Reddy Tamma. Min-o-mee: A proximity based network application leveraging the alljoyn framework. In Computing and Network Communications (CoCoNet), 2015 International Conference on, IEEE, 2015.
- Yufeng Wang, Li Wei, Athanasios V Vasilakos, and Qun Jin. Device-todevice based mobile social networking in proximity (msnp) on smart- phones: Framework, challenges and prototype. In Future Generation Computer Systems, 2017.
- Hyo Won Lee, Wha Sook Jeon, and Dong Geun Jeong. A practical indoor localization scheme for disaster relief. In Vehicular Technology Conference (VTC Spring), 2017 IEEE 85th, IEEE, 2017.
- Srikant Manas Kala, M Pavan Kumar Reddy, Ranadheer Musham, and Bheemarjuna Reddy Tamma. Interference mitigation in wireless mesh networks through radio co-location aware conflict graphs. Wireless Networks, 2016.

伺 ト く ヨ ト く ヨ ト

THANK YOU

< ≣ >

글▶ 글

QUERIES ?

Designing Infrastructure-less Disaster Networks IIT Hyderabad EmeRTeS 2019 19/19

A B + A B +

æ