Evaluating DTN Routing Schemes for Application in Vehicular Networks

Suhel Magdum, **Mehul Sharma**, Srikant Manas Kala, Antony Franklin A, and Bheemarjuna Reddy Tamma

> Networked Wireless Systems (NeWS) Lab Dept. of Computer Science and Engineering Indian Institute of Technology Hyderabad, INDIA

Fifth Workshop on Intelligent Transportation Systems (ITS) COMSNETS 2019 11th January 2019

Outline

- Introduction
- Objectives
- OTN Routing Techniques
- 4 AllJoyn Framework
- Single-Hop Scenario
- Multi-Hop Scenario
- Section 2018 Se
- Onclusions and Future Work

Introduction

- V2V/V2X is emerging as an efficient solution for achieving road safety and securely transmitting data from one vehicle to other.
- Vehicular Ad-hoc Networks (VANETs) have emerged as a competent solution for achieving seamless connectivity in ITS.

Figure: V2V/V2I communication

Introduction continued..

- Disruptions, strict latency, dynamic network topology, unbounded network size, fast vehicle movement, and environmental conditions.
- Failure of AODV and DSR.
- Technologies like Delay Tolerant Networking (DTN) and AllJoyn can be used to tackle these limitations.
- Performance of DTN routing protocols and AllJoyn in V2V/V2X aspect.
- Static nodes and bundle loss.

Objective

To compare the performance of different DTN routing schemes and investigate the relevance of AllJoyn framework in sparse V2V scenarios.

Contributions

- We compare the performance of AllJoyn framework and Direct Delivery protocol in a single-hop scenario and then draw the attention towards a multi-hop scenario by comparing the routing protocols that use DTN as the underlying paradigm.
- Evaluate the performance by transmitting the files of size 1, 4, and 10 MB from a static sender to a mobile receiver.
- Oeveloped an Android app that implements these routing protocols along with file sharing functionality.

Delay/Disruption Tolerant Networking (DTN) [1]

- Used to provide communication in the most challenging and unstable environments.
- DTN uses Store-Carry-Forward (SCF).
- No establishment of path. Data is incrementally moved and stored throughout the network in hopes that eventually reaches the destination.
- Composed of nodes with bidirectional links. Links may disconnect due to mobility.
- Connectivity issue due to frequent changes in topology, vehicle speed, and unpredictable movement of vehicles.

Direct Delivery

- Consumes minimal resources.
- Overhead is less as it sends only one message at a time.
- Works only for single hop.

Flooding

- Packet delivery is guaranteed.
- Easy to implement and converges fast.
- Bandwidth wastage is more.

Epidemic [2]

- Summary Vectors are exchanged.
- Number of redundant packets is reduced compared to flooding.
- Still suffers from bandwidth wastage.

Probabilistic Routing Protocol using History of Encounters and Transitivity (PRoPHET) [3]

- A higher delivery ratio, less communication overhead.
- delivery predictability.

AllJoyn Framework [4]

- Open source framework designed by Allseen Alliance for automatic discovery and communication between mobile devices.
- Proximity based P2P framework.
- Service advertisement, discovery, bus attachment, and session management.

Figure: Components of AllJoyn Framework

Why AllJoyn??

- Open source
- Allows dynamic configuration of the network.
- Can use C, C++, and Java for developing applications.
- Provides greater security (Simple Authentication and Security Layer (SASL)) by allowing access at the granularity of application-to-application communication.

App to transfer files

Figure: Android app to transfer files

- Nodes are connected by means of hotspot.
- Network Time Protocol (NTP) is used to synchronize the clocks.

Figure: Topology for AllJoyn and Direct Delivery

- The receiver is moved away from the sender with an average speed of 1.4 m/s which is also the average human walking speed, with multiple obstacles in between.
- We are considering the mobility of a single device (the receiver) in our experiment, to emulate sparse and low mobility V2V scenario.

Single-Hop Results

Figure: Transfer Time vs Inter-node distance (1 MB file transfer) Figure: Transfer Time vs Inter-node distance (4 MB file transfer) Figure: Transfer Time vs Inter-node distance (10 MB file transfer)

- Both fail to transmit beyond 70 meters.
- AllJoyn performs better than Direct Delivery up to 50 meters and than its performance starts to deteriorate.
- Induced delay is rather high for V2V.

Multi-Hop Scenario

Figure: Topology for Flooding, Epidemic, and PRoPHET

- Smartphones are referred to as nodes.
- Nodes are kept at a certain height for better connectivity.

Multi-Hop Results

Figure: Transfer Time vs Inter-node distance (1 MB file transfer) Figure: Transfer Time vs Inter-node distance (4 MB file transfer) Figure: Transfer Time vs Inter-node distance (10 MB file transfer)

- Flooding could not transmit beyond 80 meters.
- Epidemic performs better than PRoPHET for 4 MB and 10 MB.
- For 1 MB however, PRoPHET if performing good.
- Comparable till 40 meters.

Multi-Hop Results continued..

Figure: Throughput vs Inter-node distance (1 MB file transfer) Figure: Throughput vs Inter-node distance (4 MB file transfer) Figure: Throughput vs Inter-node distance (10 MB file transfer)

- Receiver's throughput in Mbps.
- Epidemic surpasses all the other protocols and offers maximum throughput.

- This work presented the performance analysis of routing protocols that use DTN and the AllJoyn framework for V2V applications.
- AllJoyn performs good till 40 meters only.
- AllJoyn does not support multi-hoping which is characteristic of V2V scenarios.
- Results demonstrate that Epidemic outperforms all other multi-hop DTN protocols.
- As an extension to this work,
 - We plan to develop a smartphone-based application using cloud and adhoc technologies for real-time collision detection and incident reporting.
 - We will use the Epidemic protocol to share location data to neighbors in real-time.

References

- Kevin Fall, "A Delay-tolerant Network Architecture for Challenged Internets" in proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, pp. 27-34, ACM, 2003.

Vahdat, Amin; Becker, David (2000), "**Epidemic routing for partially connected ad hoc networks**", *Technical Report CS-2000-06*, Duke University.

Phearin Sok, Keecheon Kim, "Distance-based PRoPHET routing protocol in disruption tolerant network" in Proceedings of the International Conference on ICT Convergence (ICTC), 2013.

Allseenalliance, The AllJoyn Framework, https://openconnectivity.org/developer/reference-implementation/alljoyn.

Srikant Manas Kala, Vanlin Sathya, Suhel Sajjan Magdum, Buyakar Tulja Vamshi Kiran, Hatim Lokhandwala, and Bheemarjuna Reddy Tamma, "Designing Infrastructure-less Disaster Networks by Leveraging the AllJoyn Framework", in proceedings of Workshop Program of the 20th International Conference on Distributed Computing and Networking, 2019.

Acknowledgement

This work was supported by the project M2Smart: Smart Cities for Emerging Countries based on Sensing, Network and Big Data Analysis of Multimodal Regional Transport System, JST/JICA SATREPS, Japan.

