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Abstract—The ambitious goals of Fifth Generation (5G) mobile
networks for higher system capacity, massive number of devices
and flexibility in operations demand the network architecture to
be much more flexible, efficient and autonomous. The design
of Radio Access Network (RAN) is undergoing architectural
transformations to increase the flexibility of deployment and
programmability by leveraging Network Functions Virtualiza-
tion (NFV), Software Defined Networking (SDN), and Cloud
Computing. Hence, efficient resource management strategies with
enhanced service quality play a vital role in realizing true benefits
of 5G RAN. In this work, we propose a novel and dynamic
resource management framework called “KORA” for 5G Cloud
Radio Access network (C-RAN) considering spatio-temporal
traffic heterogeneity exhibited at Remote Radio Units (RRUs).
To minimize net energy consumption in the cloud data center
and to maximize the service quality to end users, we formulate
an Integer Linear Programming model (ILP) for KORA that
performs efficient consolidation and relocation of Control Units
(CUs) in 5G C-RAN. To alleviate the computational heaviness of
the ILP optimization model, we propose a light-weight heuristic
algorithm that is scalable and applicable to real-world dense
deployments spanning a large set of CUs. By simulations, we
compare and contrast between various distinctive features of 5G
C-RAN architecture under study as well as evaluate the efficacy
of our proposed KORA framework. The heuristic algorithm can
save 27% of relocations and 33% of GBR flows from disruption,
at increased energy consumption of 6.6% in data center as
compared to KORA.

I. INTRODUCTION

The cellular operators are facing a lot of challenges in
deploying and managing Radio Access Network (RAN) in-
frastructure due to ever increasing demands from mobile
subscribers for wider variety of services and higher rates. A
standard way to meet these challenges require site expansions
to lay out massive number of base stations (i.e., Macro, Micro,
and, Small cells). However, the CAPital EXpenditure and
OPerational EXpenditure (CAPEX & OPEX) are very high for
such RAN expansion policy. Additionally, limited availability
of licensed spectrum and high complexity of maintenance,
upgradation of network services do not seem to improve the
economics of Mobile (Virtual) Network Operators (MNO,
MVNO). Cloud RAN (C-RAN) is a novel and innovative
cellular network architecture which takes the advantage of
softwarization, programmability and network functions virtu-
alization (NFV) to address the above mentioned deficiencies
in a cost effective manner [1]. Transformation of traditional
RAN architecture to support RAN function virtualization and
cloud native implementations is identified as one of the key
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Fig. 1: Integrated & shared computing facility for 5G C-RAN architecture.

use cases of ETSI NFV framework [2]. A minimal real-time
prototype encompassing above goals is demonstrated in our
previous work [3] using OpenAirInterface(OAI) platform [4].

Fig. 1 depicts 5G C-RAN architecture envisioned in our
study, compliant with the ETSI NFV reference architecture.
In C-RAN, the base station functionality is segregated into
geographically distributed radio components known as remote
radio units (RRUs) and baseband units known as Control
Units (CUs), remotely pooled in a data center (BS Cloud).
Control Unit (a.k.a. Central Unit in 5G New Radio) is a more
generic terminology followed after 3GPP Rel-14 technical
specification, which was commonly referred as BBU in C-
RAN literature. This protocol level split of base station facili-
tates the CU to be placed on a virtualized platform and share
the computing infrastructure controlled by a cloud platform
management and service orchestrator (MANO). From imple-
mentation perspective, the CU can be realized by a hypervisor
based virtual machine (VM) or containerized LXC/Docker
instance provisioned with required number of CPU cores,
frequency of CPU operation (measured in GHz), allocated
RAM size (in GB), disk storage space (in GB), and network
bandwidth. Each CU serves a designated RRU (1:1 mapping)
over a transport network called fronthaul adhered to strict
latency and bandwidth requirements. The site resident RRU is
responsible for digitizing, transmitting or receiving user signal
in its coverage while CU performs the compute-intensive
baseband signal processing of user traffic to/from RRU.

Nevertheless, the functional split in C-RAN between CU



and RRU is flexible, and operators may decide to shift
baseband functionalities partially or fully to match with the
available bandwidth on the fronthaul [5]. In general, each
base station protocol split option is viable with different
requirements and trade-offs. The protocol split option where
lower PHY stays at RRU end and higher PHY along with
upper layers are moved to data center (Option-7 as per 3GPP
TR 38.801), provides more centralization benefits at the cost
of high fronthaul bandwidth. In another kind of split where
RF, PHY and Layer 2 are kept at RRU end and upper
layers (L3+) are moved to data center, relaxes the fronthaul
bandwidth constraint at the cost of less opportunity for col-
laborative processing. Hence, depending upon the fronthaul
transport network, a more flexible distribution of baseband
processing to CU is feasible. This concept is known as
“flexible centralization of base station functionalities”. IEEE
Next Generation Fronthaul Interface (NGFI) [6] has proposed
many protocol split options which require different portions of
the protocol stack divided between cell site and remote data
center. However, for a given split, depending on the amount
of real-time user traffic generated at RRU, corresponding
CU’s computational resource requirement may grow or shrink
dynamically, thereby requiring unequal number of compute
resources at different time instants [7].

In this work, we aim to design and develop an efficient
resource management framework for CUs in 5G C-RAN based
on traffic heterogeneity exhibited at RRUs (i.e., cell sites). To
this end, we propose “KORA”, a dynamic resource manage-
ment framework, capable of auto-scaling (automatically scale-
up & scale down) compute servers to cope with fluctuating
RRU traffic load. In next section, we characterize important
considerations pertaining to resource pooling of CUs in a cloud
data center and highlight main contributions of KORA.

II. MOTIVATION : TRAFFIC-AWARE RESOURCE POOLING

A. Traffic Heterogeneity : Resource Imbalance

The traffic demands from mobile subscribers in the RRU
coverage are typically random and consists of independent
streams of user flows. Thus, the total traffic load generated
at RRU imitates a random variable, best explained in terms
of stochastic patterns. If we look at time series data of any
day, the aggregate load from all the RRUs follow a diurnal
human activity pattern i.e., a periodic trend with low load
during night time and high load during day time. In spatial
domain, RRUs exhibit greater imbalance in traffic loads. For
instance, urban/city areas show larger load variation than that
of rural regions. Similarly, public workplaces (offices) tend to
be very active in day time in weekdays while residential areas
are moderately active during nights, off-hours, and holidays.
This effect is known as spatio-temporal traffic pattern or tidal
wave. Figs. 2 and 3 show normalized traffic loads in the
range of [0,1] at 8 PM for 100 RRUs in an urban region
of 10 km × 10 km spatial layout considering both weekday
and weekend profiles, respectively. These results are generated
using a Gaussian Mixture Model (GMM) highlighted in [8].
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Fig. 2: Weekday spatial plot at 8 PM.
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Fig. 3: Weekend spatial plot at 8 PM.

Each CU serves a designated RRU and is provisioned with
virtual resources by abstracting (using hypervisor/containers)
the compute server. But, if we allocate each CU to one com-
pute server i.e., 1:1 mapping between CU and compute server,
traffic heterogeneity tends to under-utilize the computational
resources, because the server has to be active even when there
are very few users being served by the corresponding CU.
Again, the peak load occurs only for few hours of the day. This
type of 1:1 allocation between CU and compute server is very
inefficient and increases CAPEX and OPEX for operators.

B. Consolidation of CUs : Resource Minimization

Multiplexing gain is determined by the degree to which
the underlying computing resources can be shared. By fun-
damental principles of “statistical multiplexing gain”, it is
beneficial to place multiple CUs in the same compute server
provided that the total utilization by all the hosted CUs do not
exceed server’s rated capacity. Mobile or C-RAN operators
benefit from this approach by requiring fewer active compute
servers for all the CUs and save energy by switching-off idle
compute servers [1]. This phenomenon of assigning CUs into a
subset of total compute servers available in the cloud is known
as Consolidation. The allocation between CUs and compute
servers at time t can be represented by an Allocation Matrix
‘At’. Each entry [x, y] in At is a binary value which equals
to 1, if CU x is placed on compute server y, otherwise 0.

C. Relocation of CUs : Resource Regularization

In the next time epoch, due to tidal traffic heterogeneity,
the end users within an RRU coverage may impose different
traffic loads to its corresponding CU for processing. Hence,
the allocation Matrix At may not be a suitable allocation at
time (t+ 1), as some compute servers might have been over
subscribed or underloaded. Hence, some of the virtualized CUs
need to be migrated to the appropriate destination compute
servers, so that revised allocation matrix At+1 represents an
optimal allocation at time (t+ 1). This phenomenon is known
as Relocation. A given CU v is said to be relocated iff,
At(v) 6= A(t−1)(v). As per cloud computing paradigm, these
relocations are realized via live migrations of virtualized CUs.

One of the indigenous metrics to evaluate the efficiency
of relocation of CUs is to measure the number of services
interrupted during relocation downtime. In RAN, the CU is
responsible for processing the baseband functions within strict
deadlines. If the CU is relocated, then it may degrade the



active user sessions in corresponding RRU, thereby impacting
the QoS and SLA guarantees for the end users. Moreover,
CU relocations may result in radio failures/outages. Note
that, these relocations are costly and incur extra overhead.
Therefore, careful decisions to have minimal impact on the
offered QoS must be prioritized for better cellular service.
To collectively address the challenges in consolidation and
relocation of CUs with minimum service discontinuity, we
present “KORA”, a novel and efficient resource management
framework for 5G C-RAN in this paper.

D. Related Work

The scope of most of existing resource management works
on C-RAN involved the consolidation aspect while not factor-
ing the relocation overhead and its effect on service continuity
due to tidal traffic burstiness. This is an important aspect
in data center environments which needs a careful study for
5G. A multiple knapsack formulation for dynamic RRU-BBU
assignment is presented in [9] and solved using IBM CPLEX
solver. The approach minimizes the total number of required
BBUs for a given set of RRU loads and suitably adjusts
transmit powers of RRUs, but this work did not consider
the space-time traffic heterogeneity from cell sites. Also, it
did not consider BBU overload scenario and change of RRU
assignment needed to cope with peak/off-peak hours. By
using multi-dimensional Markov model, Liu et. al. in [10]
evaluated the statistical multiplexing gain of virtual BS pool
considering user sessions and cloud processing constraints,
but it lacked consideration for non-uniform peak/off-peak
hour traffic burstiness. Khan et. al. in [11] presented a QoS-
aware optimization formulation to solve RRU-BBU mapping
problem based on genetic algorithm, but no results have been
shown w.r.t. its effect on active number of BBUs, relocations as
well as the scalability for dense C-RAN environment spanning
hundreds of RRUs. In [12], a load-aware, dynamic RRU
assignment (DRA) clustering algorithm based on modified
1D bin packing is proposed w.r.t. heterogeneous traffic. DRA
focused mainly on minimization of compute servers in the data
center and did not factor relocations and QoS guarantees.

The main contributions of this work are as below.
• Design of a novel and traffic-aware dynamic resource

management framework, “KORA”, which performs effi-
cient consolidation and relocation of CUs by factoring in
the adverse effect of relocation on user services.

• Formulated an Integer Linear Programming (ILP) model
to minimize net energy consumption and service disrup-
tions to users during relocation of CUs.

• Proposed a light-weight, greedy algorithm to consolidate
and relocate CUs in fine granularity of time which
converges to a near-optimal solution.

III. SYSTEM MODEL & PROBLEM FORMULATION

In this section, we describe the RRU user traffic and CU
computing resource models for 5G RAN. Consider N =
{1, 2, . . . , N}, V = {1, 2, . . . , V }, M = {1, 2, . . . ,M} as the
finite set of RRUs, CUs, and compute servers in BS Cloud,

respectively. Since each RRU traffic is served by its corre-
sponding CU, we have V = N . Let U = {U1, U2, . . . , Uk}
be the set of k users distributed under coverage of N RRUs.
Based on stochastic point process theory [13], we deploy UEs
and RRUs in a given geographical range and simulate the
streams of different application traffic at UEs.

A. Point Processes for modeling UE and RRU Distribution

For modeling the cellular layouts, tools from stochastic
geometry, spatial statistics and point processes prove to pro-
vide more realistic and accurate analysis. These tools provide
tractable approach to derive several important observations and
results to the operators to estimate coverage, rate and cost
apriori to the deployment. We model the RRU deployment by
a single operator as per Matern hard core point process type II
(MHCPP II) and the UEs distribution as per Poisson Point Pro-
cess (PPP) [13]. Let the spatial distribution of UEs and RRUs
be ΦUE and, ΦRRU , respectively, where {ΦUE ,ΦRRU} ∈ R2.
Individual RRU coverage regions are plotted and separated
by voronoi tessellation. For accuracy, the channel is modeled
including the propagation loss with shadowing and fading.

B. RRU Traffic Model : Cell Load

At time t, each RRU r ∈ N is associated with a set of
users U{r}(t) ⊂ U . This association policy can be based
on the strongest received signal strength. Let huN (t) =
(hu{1}(t), h

u
{2}(t), ...., h

u
{N}(t)) be the complex channel vec-

tors from all the RRUs to user u ∈ U at time t. Note that, chan-
nel hu{r}(t) is known as signal channel for serving RRU r, else
considered as an interference channel. The RRU is assumed
to have instantaneous knowledge of achievable transmission
rate Ru to each user u at each TTI. We utilize a Priority Set
Scheduling (PSS) algorithm at CU which uses the achievable
rate information and channel quality to determine the amount
of Physical Resource Blocks (PRBs) to be allocated to each
user. Hence the load at each RRU r at time t, i.e., lr(t) is
given by,

lr(t) =
∑

u∈U{r}(t)

No of PRB Allocated to user u

No of Available PRB (1)

To model realistic traffic conditions as in 3GPP TS 23.203,
this work focuses on four Guaranteed Bit Rate (GBR) appli-
cations (i.e., number of Voice traffic flows (N voice), Real-
Time Gaming (N game), Conversational Videos (N conv),
Live Streaming Videos (N stream)) and number of Non-
GBR data flows (N ngbr) for each user. For each RRU,
we compute a weighted score metric wsr which represents
a unified value quantifying active user flows as in Eqn. 2.

wsr = (w1 ×N ngbr) + (w2 ×N voice+

w3 ×N conv + w4 ×N game+ w5 ×N stream)
(2)

such that,
∑5

i=1 wi = 1. Individual RRU weighted score wsr
such that wsmin <= wsr <= wsmax can be normalized
within range [0,1] as follows.

(wsr − wsmin)

(wsmax − wsmin)
(3)



An RRU possessing high normalized score indicates more
prioritized user streams. Similarly, two CUs v1, v2 ∈ V
serving RRUs r1, r2 ∈ N , can also be prioritized as in Eqn. 4.

ρv1 > ρv2 ⇐⇒ wsr1 > wsr2 (4)

where ρv denotes normalized weighted score for CU v ∈ V .

Remark 1. Since there are many weighted decision variables
(w1, w2, w3, w4, w5) involved in score metric calculation of an
RRU, an analytical proof for finding optimal value of weights
is non-trivial. However, these parameters can be decided by
an operator through policy planning. Note that, each of these
policies is operator specific and KORA is flexible enough to
be tuned to any set of policy parameters to show efficacy of
our proposed framework.

C. CU Computing Resource Model : Compute Load

The baseband processing load for user u ∈ U at time t in
coverage of RRU r consists of two main components. The
first component is a constant cell specific base processing
load fixed for given r, which is independent of users. The
second component is a dynamic user dependent value modeled
as a function of allocated time-frequency channel resources
and modulation and coding scheme (MCS) assigned to those
channel resources [14]. The baseband processing time per
subframe proc(u, t) in microsecond is given by,

proc(u, t) = rbase + pbase + u(mcs, prb) + u(r) (5)

where rbase and pbase are the constant base offsets for the
cell and virtualized platform, respectively. u(mcs, prb) is the
user dependent processing as a function of allocated PRB and
MCS, and u(r) is the remainder of other user specific tasks.

The fundamental unit of measurement of any cloud compute
platform is the number of instructions that it processes per sec-
ond. However, for accurate analysis, scientific formulations use
the count of FLoating point Operations Per Second (FLOPS)
as a measure of computer performance. For example, in double
precision convention, a general purpose Intel CPU core can
perform four floating point operations per CPU cycle. Consider
a single core Intel CPU of 2 GHz frequency, which denotes
that the CPU is capable of 2 billion CPU cycles per second,
thus resulting in a theoretical performance of (2×109×4) = 8
GFLOPS. Let us denote this limit as Lmax. Note that, this
limit may vary for different vendor specific target hardware
and architecture platforms. The compute load lv(t) for CU
v ∈ V in FLOPS serving RRU r ∈ N is given by,

lv(t) = Lmax ×

 ∑
u∈U{r}(t)

proc(u, t)

 (6)

D. Cost Functions for CU Consolidation & Relocation

As mentioned in Section II-C, CU relocation through live
migration incurs additional cost or resource overhead, because
it iteratively writes all the active memory pages of CU from
source to target compute server. Similar to [15], we model this
extra cost in terms of additional rise in the power requirement

TABLE I: Glossary

Notation Definition

lv Compute load at CU v ∈ V
Cm Capacity of compute server m ∈ M
zm 1 if compute server m ∈ M is active; otherwise 0
yvm 1 if CU v is active on compute server m; otherwise 0
At Allocation matrix of all CUs to compute servers at time t
At(v) Allocation of CU v ∈ V to compute server m at time t
costm Energy Cost of operating compute server m ∈ M
costvm

Additional energy cost incurred in relocation of
CU v ∈ V to compute server m ∈ M

ρv Normalized score of v ∈ V indicating relocation impact

during relocation. The linear relationship between compute
load and power consumption is adopted to model the power
overhead incurred while performing relocations. Considering
Pidle as the idle power drawn at 0% load and Pcap as
the maximum power drawn by the compute server at 100%
compute load, the power consumption of a compute server
with compute load lm is given by,

Pm = Pidle + (Pcap − Pidle)× lm (7)

The energy consumption is given by (Pm × tm), where tm
represents the time duration for which server operated at
Pm power. As per SPECpower benchmark1, average power
consumption for a standard General Purpose Processor (GPP)
server with compute load of 100% is approximately 259
Watt. The additional energy consumption Ev in Watt-second
during the relocation of CU v between source and destination
compute server is given by,

Ev = 0.512×Bv + 20.165 (8)
where Bv is the total amount of data volume relocated from
source to destination server [16].

E. Integer Linear Programming (ILP) Optimization Model
Table I presents the notations used in problem formulation

of KORA as an integer linear programming optimization
model. The ILP model broadly caters two distinct objectives.
(A) At any instant of time, the virtual compute resources at

CU must be allocated to minimum number of compute
servers so as to minimize the total energy consumption
(1st term in Eqn. 9).

(B) The additional energy incurred during relocations of CUs
(2nd term in Eqn. 9) needs to be minimized while factor-
ing the effect on service continuity during CU relocations.

Objective Function : Minimize

(
M∑

m=1

(zm × costm)

)
+


∑

v∈V,m∈M,
such that

m 6=A(t−1)(v)

(ρv × yvm × costvm)


(9)

Constraints :
M∑

m=1

yvm = 1, ∀v ∈ V (10)

1http://www.spec.org/power ssj2008/results/res2010q4/



V∑
v=1

(yvm × lv) ≤ (Cm × zm), ∀m ∈M (11)

Eqn. 10 ensures that each CU is associated with exactly one
compute server. Eqn. 11 ensures capacity constraint i.e., sum
of compute loads from CUs associated to a compute server
does not exceed the server’s rated capacity.

The above ILP optimization model minimizes the total
energy consumption of the C-RAN system as well as helps
to minimize the service disruption to user flows due to
CU relocations. Let us denote the two distinct terms of the
objective function in Eqn. (9) as (A+B). If we omit the 2nd
objective term B, the ILP model is oblivious to CU relocations
and only tries to minimize the total energy consumption of
active compute servers. This specific formulation of KORA
ILP model is known as relocation-oblivious formulation. By
adding the 2nd objective term B, the formulation of KORA
becomes relocation-aware, thereby ensures minimum disrup-
tion to the UE data flows. Note that, in this work, the name
KORA refers to relocation-aware framework and these are
synonymous to each other. Section V presents some important
distinctive results of these two different formulations i.e.,
KORA and relocation-oblivious KORA.

F. Challenges of KORA ILP Model

Although ILP model for KORA leads to optimality in 5G
C-RAN spanning a large number of RRUs, KORA takes
longer execution time to converge to a solution. Hence, it is
not scalable for the dense deployment scenario. To showcase
the computational heaviness of the proposed ILP model, we
varied the input size from 10 to 50 CUs and calculated its
execution time. We employed a mixed-integer-programming
(MIP) solver called “Gurobi” executing 4 concurrent threads
in an Intel Xeon E5620, 2.40 GHz machine running GAMS
Version 24 under 64-bit Windows 7. The results in Fig. 4
shows the maximum execution time taken by the ILP model
over 240 iterations. In worst case, it takes 122 seconds (∼2
minutes) to converge to the solution for 50 CUs.

Typically in 5G C-RAN, the consolidation and relocation
decisions must be taken in a very fine granularity of time
e.g., 1 ms LTE scheduling interval to react to real-time
tidal traffic variations at RRUs. Till date, to the best of our
knowledge, there are no such algorithms in place which can
attain convergence at very fine granularity. The proposed ILP
model takes several minutes in worst case. Therefore, we
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Fig. 4: Execution Time for KORA ILP Model.

propose a novel, relocation-aware heuristic algorithm which
produces efficient performance guarantees.

IV. RELOCATION-AWARE HEURISTIC ALGORITHM

In this section, we propose a relocation-aware greedy
heuristic algorithm for KORA that is scalable and computa-
tionally more viable for larger problem instances. Algorithm
aims not only in minimizing energy cost of active compute
servers, but also minimizes energy cost of relocations consid-
ering the adverse effect on user services during relocations.
Based on the compute load, all compute servers in the data
center can be classified into three classes. The set of servers
whose utilization exceeded the maximum threshold is said to
be overloaded set So. The set of servers whose utilization is
below the maximum threshold is said to be non-overloaded set
Sn. The set of servers whose utilization is below a minimum
threshold is said to be underloaded set Su. The heuristic
algorithm regularizes the overloaded compute servers into non-
overloaded ones and the underloaded servers are merged to
minimize the total number of active compute servers.

The relocation-aware heuristic operates in three distinct
stages for every overloaded compute server. They are :

I. Selecting a suitable candidate CU for relocation from an
overloaded compute server (identified as source server).

II. Determining a non-overloaded, active target server to
place chosen candidate CU. If no such server found,
instantiate a new server as a target for candidate CU.

III. Iteratively write the active memory pages/contexts of
candidate CU from source to target compute server.

In the first stage, while selecting a candidate CU for relocation,
we adopt a Minimum Relocation Cost (MRC) policy, i.e.,
relocating a CU v ∈ V , that has lowest relocation score (ζv).
The relocation score metric ζv is calculated for each CU v ∈ V

Algorithm 1 : Relocation-aware Greedy Heuristic for KORA
Input : Previous allocation matrix At−1 and lv for all CUs.
Output : Best possible allocation matrix At at time epoch t.

1: procedure GETALLOCATIONMATRIX
2: while (So is not NULL) do
3: excess ←

(∑
At(v)=m(lv)

)
− Cm

4: Find eligible CUs for relocation i.e., lv > excess
5: Compute ζv for all eligible CUs
6: CandidateCU ← CU with lowest ζv
7: Select a target compute server β for CandidateCU
8: if ∃β then
9: Relocate CandidateCU to β

10: else
11: Instantiate a new compute server β

′
as target

12: Relocate CandidateCU to β
′

13: end if
14: Update So and Sn

15: end while
16: while (Su is not NULL) do
17: Merge elements of Su respecting capacity constraint
18: end while
19: Return the new allocation matrix At

20: end procedure
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and is a weighted average of wsv and lv (computed in Eqns. 2
and 6). Metric ζv is calculated as, ζv = (α×wsv)+((1−α)×
lv) such that 0 ≤ α ≤ 1. The CUs with lower ζv are considered
as better candidates for relocation. Note that, a higher value
of α favors wsv i.e., CUs serving RRU with least GBR flows
are preferred for relocation, thereby improving overall QoS
of system. Alternatively, lower α favors compute load lv i.e.,
CUs serving RRU with lower compute load are preferred
for relocation, thereby saving the energy cost. This inherent
flexibility in choosing α significantly influences the operator
policy planning. Depending upon whether the operator’s policy
is prioritizing QoS or energy, MRC can be well tuned for the
heuristic algorithm.

In the second stage, we use a variant of Best Fit (BF)
bin packing approximation algorithm to identify a target for
candidate CU. Here best bin refers to the compute server
which can accommodate the candidate CU and the residual
utilization (i.e., Capacity - Total Utilization) after loading
the candidate CU on that server must be minimum. As an
extension to classical BF approach, our relocation heuristic
instantiates a new compute server in case there are no existing
non-overloaded compute servers to accommodate candidate
CU. The pseudo-code of proposed algorithm is given in
Algorithm 1. After regularization process by the heuristic
algorithm, all the servers become either non-overloaded or
underloaded. For each underloaded server, heuristic algorithm
merges one/more underloaded compute servers to scale down

TABLE II: Simulation Parameters

Parameter Value
Number of RRUs 100
Sampling Interval 6 Minutes
Total Traffic Capture Window 24 Hours
Total Generated Samples 240
RRU workload Range Normalized in [0,1]
[w1, w2, w3, w4, w5] [0.10, 0.30, 0.20, 0.25, 0.15]

Time-varying rate parameter Gaussian Mixture Model

the number of active compute servers used in the data center.

V. EXPERIMENTAL SETUP AND PERFORMANCE RESULTS

The large-scale simulations for KORA framework are car-
ried out considering a service region of 10KM × 10KM
with 100 RRUs distributed geographically as per MHCPP-
II and 1000 users are distributed as per PPP as described in
Section III-A. The channel gains are generated by considering
large scale fading and COST-231 path loss model. Standard
deviation of log normal shadowing is 10 dB and noise PSD
is fixed as -184 dBm/Hz. For simplicity, transmission powers
of all RRUs are kept same i.e., one Watt. Table II lists out
essential simulation parameters. The user traffic generated in
a full day of 24 hours is divided into three segments. They are
“Low Load” from 12AM to 8AM, “Med Load” from 8AM
to 12 Noon and 8PM to 12AM, “High load” from 12 Noon
to 8PM. For a full day, a total of 240 time series samples are
collected by the Gaussian Mixture Model (GMM) highlighted
in [8] where each sample is collected in 6 minutes epoch.

We conducted four sets of experiments to compare and
contrast between various specifications of KORA framework.
The experimental evaluations are shown with respect to (a)
Number of active GBR flows impacted during relocations,
(b) Number of Relocations, (c) Energy Consumption, and (d)
Scalability and execution time performance. The performance
metrics are compared with three specifications of KORA
framework i.e., (a) Relocation-Oblivious KORA, (b) KORA,
and (c) Heuristic algorithm for KORA. KORA and Heuristic
implicitly refer to relocation-aware mechanisms.

Figs. 5, 6, and 7 present a comparative study of total number
of GBR flows affected, total number of relocations, and energy
consumption during Low Load, Med Load and High Load
traffic scenarios, respectively. Relocation-Oblivious KORA
only focuses on minimizing the total energy consumption due
to active compute servers and does not factor the relocation



cost. Therefore, it incurs disruption to a large number of
GBR flows (∼13296 in High Load) in all the three traffic
scenarios. In case of KORA, the framework intelligently
leverages the “affinity” property of CUs to compute servers
for finding suitable allocation matrix. It means CU chooses
to remain at the previously allocated compute server. KORA
is able to outperform relocation-oblivious scheme by saving
88.53% of affected GBR flows. The same argument is valid
for Fig. 6 as well, where the number of active relocations
incurred are 85.74% less than relocation-oblivious scheme.
If we consider the total energy consumption per different
traffic hours as shown in Fig. 7, relocation-oblivious scheme
consumes more energy than KORA due to the additional
energy spent on higher number of relocations. Energy spent on
each relocation is significant and added to the compute server
energy consumption to calculate the total energy consumption
per traffic scenario. However, in case of KORA, relocations are
optimized as per necessity, thereby consuming 11.2% of less
energy compared to relocation-oblivious scheme. The motive
of heuristic approach is to maintain the striking optimization
balance between relocation-oblivious KORA and KORA. In
Fig. 7, the energy consumption by heuristic approach tends
to overestimate the total energy consumption, as it performs
local search optimization on the allocation matrix following a
greedy procedure. Hence, heuristic may use more number of
active compute servers which leads 6.67% more energy con-
sumption than KORA. The increase in the number of compute
servers reduces the possibility of relocations, resulting fewer
relocations and less number of affected GBR flows. As shown
in Figs. 5 and 6, heuristic is able to save 27.39% of number
of relocation and 33.26% of number of affected GBR flows
compared to KORA.

Fig. 8 presents the instantaneous variation in number of
GBR flows affected and number of relocations occurred w.r.t.
240 time series samples throughout the day. This result
establishes a proportional relationship between number of
GBR flows affected and number of relocations occurring at
any time epoch. A rise in relocation count also impacts
the flow disruption proportionally. Fig. 9 shows trade-off
between energy consumption and number of affected GBR
flows controlled by parameter α in heuristic algorithm. By
controlling α value appropriately, the service provider can
optimally choose a suitable policy for their users. At α = 1,
the heuristic algorithm is able to save 39.62% of affected
GBR flows than that of α = 0, but the energy consumption
is increased by 7.45%. We considered α = 0.43, where
two contrasting objectives are equally good. Fig. 10 shows
the scalability of proposed heuristic algorithm by varying the
number of CUs. In contrast to the execution time of ILP model
shown in Fig. 4, heuristic is light-weight and executes in few
seconds. This feature makes this scheme a suitable option for
realistic deployment of 5G C-RAN in data centers.

VI. CONCLUSIONS

This work presented a novel and efficient resource manage-
ment framework, KORA, for the virtualized 5G RAN. In this
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paper, we investigated different trade-offs involved in dynamic
consolidation and relocation of CUs across compute servers
to minimize the service disruption. First, we formulated the
problem as an ILP optimization model and then characterized
the optimal solution w.r.t. relocation-oblivious and relocation-
aware objectives. To reduce the computational complexity
of ILP, a scalable, time-efficient relocation-aware heuristic
algorithm is proposed to find solution for the same. The
proposed heuristic algorithm saves 27% of relocations and
33% of GBR flows from disruption, but consumes 6.6% more
energy than KORA.
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