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Abstract—In the Zero-touch network and service management
(ZSM) architecture, devised by ETSI, making predictions on the
observed data is among the functions provided by the analytics
block of the control loop cycle. Prediction performance depends
on several parameters, such as the utilized computational re-
sources, the leveraged prediction techniques, the deployment
location of the prediction tools with respect to the data.

This paper proposes a Hybrid Forecast Framework (HFF)
running at the network edge or in the cloud to provide fore-
casting with the performance required by the control loop
cycle. Forecasting at the edge might shorten the control loop
cycle if resources shall be made available locally where data is
collected. However, in general, edge computational resources are
less abundant than the cloud ones, thus causing longer time to
perform the prediction. On the opposite, forecasting in the cloud
might require more time for the data to reach the utilized tools
but more computational resources could be exploited. The HFF
is based on utilizing traditional time series analysis prediction
algorithms to minimize the utilized resources and energy at the
edge while it exploits AI/ML tools to make predictions in the
cloud.

Results show that for short lead time (i.e., the time, in the fu-
ture, at which the status of the considered parameter is predicted)
edge-based prediction exploiting time series analysis provides
better accuracy, requires less resources and time (thus energy)
than cloud-based prediction. However, if the lead time is long,
cloud-based prediction exploiting Artificial Intelligence/Machine
Learning (AI/ML) provides better accuracy. Thus, if the lead time
is long, it is preferable because the long lead time compensates
for the higher time for prediction, mainly due to data transfer.

Index Terms—Forecasting, AI/ML, Time series analysis, Edge,
Cloud.

I. INTRODUCTION

The foreseen complexity in operating and managing 5G and
beyond networks has fostered the approach to closed-loop
automation of network and service management operations.
The Zero-touch Network and Service Management (ZSM),
proposed by ETSI [1], is among the emerging architectures [2]
(e.g., TM Forum’s Zero-touch Orchestration, Operations and
Management (ZOOM) and Smart BPM (Business Process
Management)). The ZSM broad design goal is to enable
zero-touch automated network and service management in a
multi-vendor environment. The ZSM relies on closed-loop
management operation. To achieve a closed-loop operation,
a management framework needs to provide means for the
ordered invocation of the phases of the closed-loop (e.g., the
Observe, Orient, Decide, and Act steps of the OODA loop

proposed by J.R. Boyd [3]). The management functions con-
tribute with their respective management service capabilities to
achieve the functionality of different steps of the closed loop.
Specifically, Data Collection contributes to Observe, Analytics
contributes to Orient, Intelligence contributes to Decide, and
Orchestration and Control contribute to the Act steps.

In general, the control loop duration impacts the Service
Level Agreement (SLA) between service providers and cus-
tomers because it impacts the reaction time of the system to
state changes. The control loop duration, in turn, is impacted
not only by the time required to perform the control loop
functions but also by the time required to transfer data between
the control loop functional elements. Thus, making fast and
accurate predictions might improve the provider capability
of fulfilling the SLAs but attention also has be paid to the
communication between the functional elements.

ETSI provides only the architectural view of the ZSM,
but it does not provide possible implementations and the
related performance evaluations. This paper focuses on the
predictive analytics function of the ZSM analytics block.
Forecasting/predictive analytics has been already proposed
for scaling 5G core network resources by anticipating traffic
load changes [4]. The approach proposed in [4] is based on
two Artificial Intelligence/Machine Learning (AI/ML) tech-
niques: Recursive Neural Networks (RNN), more specifically
Long Short-Term Memory (LSTM) and Deep Neural Net-
work (DNN). The results show that forecast-based scalability
mechanism outperforms the threshold-based solutions in terms
of latency to react to traffic changes. However, in [4] all
the control loop functions are co-located, thus propagation
delay of data between control loop functional elements is not
taken into account. In more distributed scenarios where Virtual
Network Function (VNF) and Software Defined Network
(SDN) technologies are exploited, the placement of predictive
analytics services, whether at the edge or in the cloud, might
impact the control loop cycle time.

In addition, exploiting edge resources offers delay-sensitive
and cost-efficient services, because the edge is closer to the
end users. Conversely, the cloud is far from the end users, thus
an additional communication delay [5] is to be considered.
Although the edge brings several advantages over the cloud,
the computation and storage resources of edge servers are
limited and less powerful when compared to the cloud servers.

For what concerns the prediction/forecast techniques and,



more specifically, for time series data, either traditional time
series analysis or ML-based methods can be exploited. Tradi-
tional time series analysis methods such as Error, Trend, Sea-
sonality forecast (ETS), Auto Regressive Integrated Moving
Average (ARIMA), and Exponential Smoothing are the most
popular and effective time series predictors [6]. Traditional
methods might also outperform several other ML-based meth-
ods, including LSTM and RNNs, depending on the considered
dataset and the forecast lead time (i.e., the time, in the future,
at which the status of the considered quantity is predicted) [7].
Traditional prediction techniques are fast to train and forecast
(i.e., testing), but are neither very accurate nor flexible to adapt
to complex data.

On the other end, ML-based methods, such as LSTM, can
forecast accurately but they require long training. In addition,
ML-based methods require a large amount of data, which is a
computationally expensive. Thus, it is not always feasible to
use such powerful computing tools.

To reduce such complexity and also concerns related to data
privacy while transmitting over the network, edge analytics
can be exploited depending on the prediction accuracy and
the availability of the data. Note that, severe resource scarcity
issues may exist if ML-based methods are supported at the
edge, especially when a large amount of data has to be
processed. Thus, applying traditional prediction methods at
the edge, while applying ML-based methods in the cloud, can
provide a trade off between the achievable performance and
the available resources.

This paper proposes a Hybrid Forecasting Framework (HFF)
running at the network edge and in the cloud. HFF considers
two different traditional time series analysis prediction ap-
proaches such as Double Exponential Smoothing (DES) and
Triple Exponential Smoothing (TES) running at the edge and
one ML-based approach such as Long Short-Term Memory
(LSTM) running in the cloud. These methods are utilized
to forecast the number of VNFs/Virtual Machines (VMs)
necessary to support an automotive application as a function
of the road traffic while maintaining an agreed SLA, such as
the elaboration time in Advanced Driving Assistance (ADA)
services. Although the considered time series is the number of
cars passing through a specific road, the considered framework
is general and can be applied to any time-varying request (e.g.,
VNFs for packet inspection, lightpath dynamic demands).

Results show that traditional time series analysis methods
based on exponential smoothing outperform ML methods,
such as LSTM, in terms of accuracy (measured as root mean
square error) for short lead time forecasts (i.e., the time, in
the future, at which the status of the considered quantity is
predicted).

Moreover they require less resources and time, and thus
energy. However, if the lead time is long, cloud-based pre-
diction exploiting AI/ML provides better accuracy. Thus, if
the lead time is long, cloud-based prediction is preferable
because the long lead time compensates for the longer time
for prediction, mainly due to data transfer. In the considered
scenario, as the time for activating/scaling Virtual Machines

(VMs) is long (usually minutes), thus requiring a long lead
time, cloud analytics is preferable.

II. HYBRID FORECAST FRAMEWORK ARCHITECTURE AND
IMPLEMENTATION

Figure 1 reports the control loop described in [1]. The
overall control loop time, depends not only on the time taken
to perform the control loop functions (i.e., observe, orient,
decide, and act) by the respective management functions
(i.e., data collection, analytics, intelligence, orchestration and
control), but also on the time taken by the communication
among the functional elements.

Figure 1. Mapping between ZSM architecture building blocks and closed
loop functions as in [1]

This paper focuses only on the part of the control loop
between the data collection, from the managed resources, and
the analytics block, as depicted in Figure 2, even though a
comparable contribution to the overall control cycle time can
be expected to be provided by the remaining part of the control
loop.

Figure 2 shows the functions of the control loop applied
to the considered scenario. Data is collected at the edge.
With respect to traditional application, the proposed Hybrid
Forecast Framework (HFF) features the deployment of the data
analytics function both at the edge and in the core. Edge data
analytics is based on traditional time series analysis prediction
approaches such as DES and TES. Core data analytics is based
on ML-based approach such as LSTM. The selection among
the two possible analytics functions depends on the required
control cycle time, the available resources and the lead time,
defined as period for which forecasts are needed (i.e., the
future time for which the data need to be predicted).

III. CONSIDERED FORECASTING METHODS

Exponential smoothing and ML-based methods are consid-
ered for implementing edge analytics and cloud analytics, re-
spectively. Exponential smoothing is a time series forecasting
method for uni-variate data where the prediction is a weighted
linear sum of recent past observations or lags [8]. In this
paper, two exponential smoothing techniques are considered:
Double Exponential Smoothing (DES) and Triple Exponential
Smoothing (TES).



Figure 2. Scope of the paper within the ZSM and edge and core analytics

A. Double Exponential Smoothing (DES)

DES uses a level smoothing Lt with a level factor α ∈ [0, 1]
and trend smoothing Tt with a trend factor β ∈ [0, 1], as
described in Eqs. (2) and (3), to compute the k-step ahead
(namely lead time) forecast yt+k through Eq. (1).

ŷt+k = Lt + k · Tt (1)
Lt = α · yt + (1− α) · (Lt−1 + Tt−1) (2)
Tt = β · (Lt − Lt−1) + (1− β) · Tt−1 (3)

The level smoothing Lt is obtained based on the previous
experienced time interval value of level smoothing Lt−1 and
trend smoothing Tt−1. Note that, in Eq. (2), the current value
of time series (i.e., yt) is used to estimate Lt. Similarly, the
trend smoothing Tt is obtained from previous values of the
level smoothing Lt−1 and trend smoothing Tt−1. However,
instead of the current value of the time series the current values
of the level smoothing Lt is utilized. The main drawback of
DES is the inability to account for seasonality of demands
when the data show both trend and seasonality.

B. Triple Exponential Smoothing (TES)

As shown in Eqs. (5)-(7), TES exploits three different
forecasting factors such as level Lt, trend Tt, and seasonality
St. Eq. (4) forecasts the value of the observed quantity ŷt+k

at time t + k, given all the data points up to time t and the
seasonality constant s (i.e., the number of observations per sea-
son). TES can be performed in two ways, namely additive and
multiplicative methods, depending on the seasonality effect.
The additive method is considered when the seasonality effect
is constant, whereas, the multiplicative method is used when
the size of seasonality effect is proportional to the mean [9].
Note that, the following equations are defined based on the
additive method.

ŷt+k = Lt + k · Tt + St+k−s (4)
Lt = α · (yt − St−s) + (1− α) · (Lt−1 + Tt−1) (5)
Tt = β · (Lt − Lt−1) + (1− β) · Tt−1 (6)
St = γ · (yt − Lt) + (1− γ) · St−s, (7)

where s is the length of the seasonal cycle, α ∈ [0, 1], β ∈
[0, 1], and γ ∈ [0, 1].

C. Long Short-Term Memory (LSTM)

LSTM is a special form of Recurrent Neural Network
(RNN) that can learn long-term dependencies based on the
information remembered in previous steps of the learning
process. LSTM consists of a set of recurrent blocks (i.e.,
memory blocks) where each block contains one or more
memory cells and multiplicative units such as input, output
and forget gate.

LSTM is one of the most successful model for forecasting
long-term time series. The LSTM can be characterized by
different hyper-parameters, specifically the number of hidden
layers, the number of neurons, and the batch size. Details of
LSTM parameters and their impact on prediction accuracy can
be found in [10]. However, the process of finding optimal
hyper-parameters which minimize the forecasting error could
be time and resource consuming.

In the proposed approach, the LSTM input vector corre-
sponds to the n previous data points and the output vector
corresponds to k-steps ahead with respect to the current time
t of the considered time series. In this work, a stacked LSTM
model is exploited with a single-step (i.e., k = 1) and a multi-
step (i.e., k > 1) forecasting.

In LSTM single-step forecasting (LSTM-SSF), a single data
point is predicted based on n previous data points considered
for forecasting (i.e., the size of the monitoring window):

P (t) = model(O(t− 1), O(t− 2), ..., O(t− n)), (8)

where P is the prediction of the single data point at time t
and O is the observed value in the n previous data points.

In LSTM multi-step forecasting (LSTM-MSF), LSTM pre-
dicts k number of data points by considering n previous
observed data points.

P (t+ k − 1, t+ k − 2, ..., t) = model(O(t− 1), O(t− 2),

... , O(t− n)), (9)

where k > 1.
The LSTM-MSF is exploited in two ways: one approach

is forecasting k data points at a time from n data points as
described in Eq. (9); the second approach is realizing a multi-
step forecast by using a recursive single-step forecast, where
the forecast data value is used as an input to the model by
replacing t − n data point as defined in Eq. (10). The latter
case is referred to as LSTM-MSF-recursive.

P (t) = model(O(t− 1), O(t− 2), ..., O(t− n))
P (t+ 1) = model(P (t), O(t− 1), ..., O(t− n+ 1))

...

P (t+ k − 1) = model(P (t+ k − 2), P (t+ k − 3),

... , O(t− n+ k − 1)) (10)

Note that, DES-recursive and TES-recursive are also con-
sidered in this paper and implemented in the same way, by
updating the level smoothing Lt and the trend smoothing
Tt with the predicted data points while calculating ŷt+k in
Eqs. (1) and (4).



IV. PERFORMANCE EVALUATION

The considered forecasting techniques are applied to predict
the number of VMs needed by an automotive application (e.g.,
Advanced Driving Assistance (ADA)) without impacting its
performance (e.g., response time) as function of the variable
number of cars that are passing through a street. Despite
the specificity of the considered application the considered
framework is general and can be applied to any time-varying
request (e.g., VNFs for packet inspection, lightpath dynamic
demands). Each VNF/VM is assumed to support the service
required by a fixed number of cars.

The considered dataset is obtained from [11], where the
number of vehicles of a specific street (Corso Belgio) in the
city of Torino (in Italy) is reported every sixty seconds. In the
paper, a dataset of forty-eight hours (two days) is considered.

The considered performance parameter is the prediction
accuracy, represented by the Root Mean Square Error (RMSE)
of the predicted values versus the time series real values. The
performance is measured as function of the lead time (i.e., the
future time for which the data need to be predicted). The lead
time can be a function of the time required to (de)allocate the
necessary resources and it depends upon a number of factors,
such as type of service and utilised virtualization mechanism.
The window size (n) is defined as the length of n previous
observed data points considered to predict k number of data
points (i.e., k ≥ 1 ).

In DES and TES, the hyper-parameter values such as α,
β and γ are selected to minimize RMSE, as summarized
in Table I. The seasonality of the TES method is set to
twenty-four hours. LSTM is implemented by using Google’s
TensorFlow library, accessed through the Keras high-level
front-end. Table I reports the set of parameters that are used to
evaluate the considered forecasting methods. The experiments
are carried out on a workstation equipped with 8 cores Intel(R)
i7-6820HQ 2.70GHz CPU with 16GB RAM, and running on
Ubuntu 16.04 LTS 64-bit operating system.

Table I
EVALUATION PARAMETERS

Parameter Forecasting Method Value
Level factor (α) DES, TES 0.9, 0.9
Trend factor (β) DES, TES 0, 0.01

Seasonality factor (γ) TES 0.9
Number of hidden layers LSTM 2
Neurons in hidden layer LSTM 100

Epochs LSTM 100
Window size (n) LSTM 10, 15, 20, 25

Batch size LSTM 5
Dataset split (Train:Test) LSTM (70:30)

A. Impact of the dataset split ratio

Figure 3 shows the RMSE as function of LSTM-MSF and
LSTM-MSF-recursive forecast methods with different dataset
split ratios. The window size is set to 10 samples and the lead
time is set to 5 minutes. For example, if the training versus
testing (i.e., forecasting) proportion is set to x : y, it means that
x% of the collected data are used for training while y% of the
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collected data are used for forecasting performance evaluation.
Here, different training:testing ratios are considered to observe
how accurate, in terms of RMSE, is the prediction. As shown
in Figure 3, the prediction accuracy increases with an increase
in training data size, however, at 70 : 30 split ratio, the
considered dataset provides minimum RMSE values. Hence,
70 : 30 split ratio is an inflection point for the considered
dataset. The best split ratio mainly depends on the total number
of samples in the considered dataset and the model used for
training.

B. Impact of the lead time

Figure 4 shows the RMSE as a function of the lead time
k with the six considered forecasting methods. The window
size is set to 10 samples and the split ratio is set to 70 : 30.
For the considered dataset, when the lead time is set to one
minute, the DES and TES methods outperform LSTM-MSF.
However, when the lead time is long (i.e., 15 minutes), LSTM-
MSF performs well compared to time series methods. In
addition, LSTM-MSF-recursive method achieves the minimum
RMSE value compared to LSTM-MSF method. Moreover, no
significant changes are observed in case of DES-recursive and
TES-recursive with DES and TES, due to the optimal selection
of the α, β, and γ parameter values. Thus, for the considered



dataset, if the lead time is short, methods based on exponential
smoothing running at the edge can provide the best RMSE
with a small contribution to the control loop cycle time.

In this way, the edge analytics is capable of providing
a quick reply, meeting the low latency requirement of the
service. Indeed, the prediction time for DES is around one
µs, for TES is about 19 µs while for LSTM is about 3000
µs.

C. Impact of the window size

Figure 5 shows the RMSE as a function of the window
size n with LSTM-MST and LSTM-MST-recursive forecasting
methods. The split ratio is set to 70 : 30. Figure 5 depicts
the RMSE values for three different lengths of lead time: 5
minutes (top), 10 minutes (middle), and 15 minutes (bottom).
If the lead time is set to 5 minutes, the RMSE values of
LSTM-MST-recursive and LSTM-MST are similar for all
the considered window sizes. However, LSTM-MST-recursive
outperforms LSTM-MST as the lead time increases. Moreover,
LSTM-MST-recursive provides an almost stable RMSE value
independent of window sizes.
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V. CONCLUSIONS AND FUTURE WORK

This paper proposes a Hybrid Forecasting Framework (HFF)
to implement the Analytics block of zero touch network and
service management architecture proposed by ETSI. The HFF
is based on implementing analytics/forecasting at both the
network edge and the network core. Edge analytics is based on
double and triple exponential smoothing while cloud analytics
is based on a Recursive Neural Networks (RNN) method, more
specifically Long Short-Term Memory (LSTM).

Performance evaluation results showed that edge analytics
is capable of achieving a better forecast accuracy, measured

in terms of root-mean-square error, than cloud analytics if
the forecast value is in the near future (i.e., short lead time).
Conversely, cloud analytics achieves better performance if the
forecast value is in the far future (i.e., long lead time).

Thus, edge analytics is preferable when the lead time is
short because it provides a better accuracy, at least with the
considered dataset, and it allows for a short control loop cycle
time by performing local forecast (i.e., short time for data
transfer). Moreover, because it requires less resources and
short prediction time, it is also energy efficient. If, instead,
the lead time is long, core analytics is preferable because the
longer prediction time, mainly due to the time to transfer the
data, is compensated by a better accuracy. Moreover, because
the lead time is long, a larger control loop cycle time is
admissible. Thus, in general, if the time for (de)allocating
resources is long (e.g., activating/scaling VMs), which implies
a long lead time, cloud analytics is preferable.

The future work of this paper will focus on how multiple
stages of the closed-loop blocks could impact on edge and
cloud analytics. In addition, the dynamic (on-the-fly) selection
of edge or cloud prediction will be included that helps intel-
ligently scaling network functions and resource deployments
based on the traffic fluctuations. Moreover, other techniques
that incorporate the spatial features will also be considered to
exploits the accuracy of the forecasting techniques.
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