
FALCON: A Framework for Fault Prediction in
Open RAN Using Multi-Level Telemetry

Yaswanth Kumar LS⋆, Somya Jain⋆, Bheemarjuna Reddy Tamma⋆, and Koteswararao Kondepu†
⋆ Indian Institute of Technology Hyderabad, India
† Indian Institute of Technology Dharwad, India

E-mail: {cs24resch11007, cs23mtech12011, tbr}@iith.ac.in, k.kondepu@iitdh.ac.in

Abstract—Open Radio Access Network (O-RAN) has brought
in deployment flexibility and intelligent RAN control for mobile
operators through its disaggregated and modular architecture
using open interfaces. However, this disaggregation introduces
complexities in system integration and network management, as
components are often sourced from different vendors. In addition,
the operators who are relying on open source and virtualized
components — which are deployed on commodity hardware —
require additional resilient solutions as O-RAN deployments suf-
fer from the risk of failures at multiple levels including infrastruc-
ture, platform, and RAN levels. To address these challenges, this
paper proposes FALCON, a fault prediction framework for O-
RAN, which leverages infrastructure-, platform-, and RAN-level
telemetry to predict faults in virtualized O-RAN deployments. By
aggregating and analyzing metrics from various components at
different levels using AI/ML models, the FALCON framework
enables proactive fault management, providing operators with
actionable insights to implement timely preventive measures.
The FALCON framework, using a Random Forest classifier,
outperforms two other classifiers on the predicted telemetry,
achieving an average accuracy and F1-score of more than 98%.

Index Terms—Open RAN, Network Telemetry, Resilient Net-
works, Fault Prediction

I. INTRODUCTION

As mobile networks become increasingly complex and dy-
namic, the need for intelligent and adaptive network manage-
ment has become crucial. Traditional Radio Access Network
(RAN) solutions, designed primarily for earlier generations
of cellular networks, struggle to meet the 5G use cases
requirements due to their closed and monolithic nature. Vendor
lock-in and proprietary hardware hinder flexibility, making
it difficult for mobile operators to introduce new features,
integrate diverse technologies or respond to rapid changes in
traffic patterns and service demands [1]. Moreover, traditional
RAN management relies on static, pre-defined configurations,
lacking real-time optimization capabilities. As traffic demands
fluctuate and dynamic services are introduced, the traditional
RAN architectures lead to inefficiencies and increased opera-
tional costs. Fault management in traditional RAN is reactive,
and addresses only after they cause significant disruptions,
which makes it challenging to ensure continuous service
availability [2].

The new RAN architectures, namely Open RAN (O-RAN)
architecture offers a paradigm shift in how network services
are deployed and managed [1]. The O-RAN provides a sig-
nificant advantage by disaggregating RAN functions, by intro-

ducing RAN Intelligent Controller (RIC) and open interfaces
among network functions that foster collaboration and inter-
operability among multiple vendors while allowing for greater
flexibility in network deployments using Commercial-Off-
The-Shelf (COTS) hardware and cloud native technologies.
Openness in O-RAN facilitates innovation, enabling seamless
integration of third-party apps and empowering the opera-
tors to leverage advanced Artificial Intelligence (AI)/Machine
Learning (ML) algorithms for intelligent RAN control and
automation.

A typical O-RAN 5G deployment requires diverse multi-
vendor components, including COTS hardware, virtualization
technologies, open-source and proprietary software for O-
RAN functions such as Near-RT RIC, Open Centralized
Unit (O-CU), Open Distributed Unit (O-DU), third-party
xApps/rApps, and Service Management and Orchestration
(SMO). This diversity poses integration and management chal-
lenges. Unlike previous generations tightly integrated compo-
nents, O-RAN relies on multi-vendor solutions. While offering
cost savings and flexibility, the disaggregated approach lacks
built-in fault tolerance as these networks could be susceptible
to faults, bugs, and misconfigurations and suffer from resource
contentions and performance issues as shown in Table I. The
link failures often require traffic rerouting, straining resources
and reducing system stability. Ensuring resilience in this het-
erogeneous ecosystem requires advanced fault management,
predictive analytics, and robust orchestration to mitigate chal-
lenges for widespread O-RAN adoption.

To address such challenges in O-RAN deployments, a pre-
cise monitoring system is crucial. Such a system shall provide
transparent telemetry data by ensuring trust and accountability
without vendor bias when attributing faults. This approach em-
powers operators to take timely preventive measures, creating
an end-to-end resilient network across infrastructure, platform,
and application (RAN) levels. In this work, we collect multi-
level telemetry in virtualized O-RAN deployments, including
infrastructure-level metrics (host-level telemetry), platform-
level metrics (container-level telemetry), and application-level
metrics (RAN telemetry).

This paper proposes a novel framework titled FALCON
which aims to achieve self-resilience in O-RAN systems
using this multi-level telemetry. The FALCON framework
continuously collects and analyzes telemetry data at all levels,
forecasting Key Performance Indicators (KPIs) to predict

TABLE I: Anomalous behaviors, their causes, and potential
implications in virtualized O-RAN deployments

Anomalous behavior Potential Faults/Issues Potential Failures

Sudden spike in server
temperature, decrease in
CPU clock rate

Inadequate cooling, ther-
mal throttling due to high
workload, malfunctioning
of fans or cooling units

Performance degradation
of O-RAN NFs, CPU
throttling leading to la-
tency spikes, system shut-
down, impact on UEs

Sudden increase in mem-
ory usage

Excessive logging by
xApps or O-RAN
NFs, memory leaks
in software components,
misconfigured processes
or memory allocation

Crash of O-RAN NFs or
containers, Disruption in
UE sessions or service
drops

High CPU usage, bit-rate
spikes, increased traffic

Misconfiguration of rout-
ing policies, RAN over-
load

User Equipment (UE)
disconnectivity, crash of
O-RAN NFs

Reduced traffic, timeouts,
Protocol Data Unit (PDU)
re-establishments

Link faults on O-RAN in-
terfaces, network conges-
tion

Reduced throughput, Dis-
ruption in UE sessions or
service drops

High CPU load, saturation
of VSwitch port

VNF resource contention,
high traffic volume, in-
efficient load balancing
across NF instances

Application service crash,
end-to-end service failures

faults in advance. This proactive monitoring enables operators
to implement preemptive measures, addressing issues before
they escalate into larger disruptions, thus maintaining network
stability and performance.

The FALCON framework employs dimensionality reduction
techniques combined with forecasting models to handle high-
dimensional O-RAN telemetry data and thereby limits the
focus only to the key features. It provides accurate and efficient
anomaly predictions by classifying anomalous behavior to
determine the type of fault, significantly reducing the resource
overhead caused by the high-dimensional data of O-RAN
telemetry. This approach enhances scalability, enabling FAL-
CON to efficiently process large volumes of high-dimensional
telemetry data from complex O-RAN deployments while
maintaining performance as networks grow.

The rest of the paper is as organized follows: Section II
presents the related work, followed by the proposed FAL-
CON framework in Section III. Section IV describes the
experimental setup, while Section V presents the performance
results. Finally, Section VI provides the conclusions and future
directions.

II. RELATED WORK

This section reviews existing works on resilience in cellular
networks and cloud environments, and presents research gaps.

The authors of [2] provided a comprehensive survey on fault
management techniques used in traditional network deploy-
ments and also studied the impact of virtualization in network
fault management. The authors of [3] used ML models to
detect Service Level Agreement (SLA) violations in NFV
environments and preliminary symptoms of SLAs violations so
as to help the operators to locate anomalous VMs that caused
SLA violations for applying appropriate recovery techniques
in a proactive manner. In [4], the authors presented different

stages of fault management process by using classical ML and
neural network-based deep learning.

Live migration and recovery mechanisms are proposed in
the literature to address failure of RAN and mobile core
components. The authors of [5], [6] proposed live-migration
schemes for both containerized mobile core and CU NFs in
5G. Atlas [7] ensures Distributed Unit (DU) resilience using
proactive and reactive migrations through existing cellular
mechanisms like handovers and cell reselection. Strategies
such as pre-copy, post-copy, and hybrid migrations [8] are
used for improving resiliency of specific RAN component(s)
in these works. , yet challenges persist in achieving end-to-end
resiliency across infrastructure, platform, and RAN levels in
virtualized O-RAN deployments.

Misconfigurations are a significant source of faults in Open
RAN systems. The authors of [9] categorize misconfigura-
tions into three main categories: integration and operation
related, SDN/NFV related, and AI/ML related. This work
emphasizes the role of AI/ML based detection techniques,
including anomaly detection for KPI analysis and correlation
analysis to identify conflicting xApps in O-RAN. Similarly,
systems like SpotLight [10] uses advanced anomaly detection
techniques such as JVGAN and MRPI, achieving high accuracy
and efficient bandwidth usage. SpotLight further incorporates
explainability tools like KFilter and CausalNex for root cause
analysis. While effective for anomaly detection and localiza-
tion, these solutions do not offer broader application (RAN)
level and infrastructure level fault management solutions. Also
these works focus mainly on detecting configuration errors or
faults based on RAN or platform level KPIs collected, but not
on forecasting potential faults and failures for taking proactive
measures to make the system self-resilient.

In summary, existing works in the literature excel in specific
areas like cloud resource management, DU/CU recovery, and
O-RAN anomaly detection, but they do not offer holistic
solutions for predictive fault management across infrastructure,
platform, and RAN levels. To address this gap, we propose
FALCON, a holistic framework for virtualized O-RAN de-
ployments.

III. PROPOSED FALCON FRAMEWORK

Fig. 1 shows the architecture of the proposed FALCON
framework. The O1 interface facilitates the operation and
management (e.g., fault management) of O-RAN components,
while the O2 interface manages the O-Cloud infrastructure and
the life cycle of O-RAN network functions. In the proposed
framework, the SMO periodically collects three types of
telemetry data from the O-RAN system. It collects the man-
aged element telemetry — also referred as application-level or
RAN telemetry — from O-RAN components, including O-RU,
O-DU, and O-CU, via the O1 interface. The platform telemetry
and infrastructure telemetry are collected from the O-Cloud
over O2 interface using exporters. The gathered telemetry data
are stored in separate time-series databases within the SMO.

In this work, we collect diverse telemetry data from O-RAN
components and the underlying O-Cloud to estimate network

Fig. 1: Solution Architecture of FALCON Framework.

state. For example, consider a scenario where RAN telemetry
shows increased packet loss (throughput degradation) and
latency spikes. Analyzing only these metrics might lead to an
incorrect diagnosis, such as partial link failures and network
congestion faults. However, the network performance degra-
dation may also happen due to host CPU frequency drops
triggered by CPU temperature spikes. Hence, the FALCON
framework considers the following multi-level telemetry data
to prevent misdiagnosis.

• RAN Telemetry: It includes alarms and events for fault
management, current configuration settings of the man-
aged elements, KPIs related to network health and user-
specific metrics, power metrics, etc.

• Platform Telemetry: This includes container-level CPU
metrics, memory usage, network statistics, filesystem
metrics, disk I/O metrics, and more which help in
identifying container-specific performance issues such as
bottlenecks, misconfigurations, or resource limitations,
enabling efficient resource allocation and performance
optimization within the containerized environment.

• Infrastructure Telemetry: This includes host-level CPU
metrics, memory usage, network statistics, filesystem
metrics, disk I/O metrics, and system health-related met-
rics which help to monitor the overall health of the host
system by detecting hardware issues, excessive resource
consumption, and performance degradation, ensuring the
stability and reliability of the underlying O-Cloud infras-
tructure.

The collected telemetry data is pre-processed, where data
from different levels is integrated and imputed to handle miss-
ing values. FALCON employs dimensionality reduction tech-
niques to handle potentially large dimensionality of telemetry

data while preserving its essential features and allowing scal-
ability. In addition, dimensionality reduction helps to reduce
computational cost while predicting telemetry values. Since
RAN components are interlinked, the collected telemetry has
both spatial and temporal dependencies. In order to preserve
the spatial dependencies, telemetry’s reduced features are
given to forecaster model as a single input.

Fig. 2: Detailed ML pipeline used in FALCON.

From Fig. 2, At−k to At denote the preprocessed telemetry
data vector spanning from time step (t − k)th to tth, where
k > m and m is the future prediction step. Principal Com-
ponent Analysis (PCA), a dimensionality reduction technique,
is applied to this vector to obtain a set of reduced features,
Rt−k to Rt. These reduced features are provided as an input to
the Long Short-Term Memory (LSTM) time-series forecasting
model. The LSTM Forecaster model processes the sequential
input through layers to capture the temporal dependencies and
relationships within the data. Specifically, the LSTM model
utilizes: (i) an LSTM layer with input size of | Rt |, h hidden
units, and some additional layers to learn the temporal and
spatial patterns and (ii) a fully connected linear layer with h
input features and | Rt | output features.

The LSTM model forecasts the future values of the reduced
features at (t+m)th time step. A single vector Ft+m is recon-
structed to original dimensions from Rt+m, and subsequently
fed to a multi-class Random Forest (RF) classifier. Since,
RAN’s anomalous behavior depends not only on CPU/Memory
usage but also on the traffic generated by the UEs as well
as number of UEs connected to the network, RF classifier is
used as it makes decisions related to the type of fault based
on lower/upper thresholds of multiple features.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup used to eval-
uate the performance of the proposed FALCON framework. It
also includes details of the hardware and software tools used,
how various faults are injected, what telemetry data is collected
during the experiments, and the ML-based fault prediction
pipeline.

A. Testbed Setup

We utilized a server equipped with two Intel Xeon ES-
2690 v4 processors, providing a total of 54 cores, along
with 64 GB of RAM and running Ubuntu 22.04 for our
experimental setup. In this server, we integrate the O-RAN
SC Near-RT RIC [11] together with the O-RAN components:
srsCU, srsDU, and srsUE [12]. The srsCU resources restricted

Fig. 3: Experimental Testbed.

with 3 CPU cores and 2 GB of RAM, while the srsDU had
3 CPU cores and 3 GB of RAM while other components
are not resource restricted. Furthermore, Open5GS [13] was
deployed as the core network. Each component is deployed
as a Docker container to ensure modularity and scalability. In
total, the testbed consists of four CUs, four DUs, and four UEs,
each with a one-to-one mapping, as shown in Fig. 3 to create
scenarios where only a subset of RAN components are induced
with stress to study its impact on other RAN components.

Table II shows the details of telemetry collection from the
containers by using node exporter [14], cAdvisor [15], and
Metrics Server [12]. Prometheus [16] stores collected data
from cAdvisor and Node Exporter at a frequency of one
second. In contrast, InfluxDB [17] stores RAN telemetry from
the Metrics Server, which receives updates from all DUs every
100 milli-sec as shown in Fig. 3.
Traffic generation: We generate user traffic by sending ping
messages every 100 milli-sec to the core network, with the
packet size randomly varying for every 5 seconds in such
a way that the aggregate user traffic per hour follows the
distribution as shown in Fig. 4 for both uplink and downlink.
iPerf traffic is generated in the uplink direction from the users
to fully occupy the channel with user traffic.
LSTM Forecaster Configuration: We configured the LSTM
model with | Rt |= 10, h = 32 which were defined in
Section III to create an LSTM forecaster model with input size
of 10, 32 hidden units, and two additional layers. Additionally
a fully connected layer with 32 input features and 10 output
features is attached to the two additional layers.

B. Fault Injection Approach

The fault injection process involves emulating different
real-world faults in virtualized O-RAN deployments (refer to
Table I) and collecting telemetry data at various levels for
capturing anomalous system behavior due to these faults. In
this work, we use tools like stress-ng [19] to stress-test various

TABLE II: Details of Telemetry Collection in FALCON
Framework

Level Tools Used Type of Data Collected

RAN (DU) —
Managed Ele-
ment Teleme-
try

Metric Server
collects metrics
from DU

• Number of active UEs
• Current total downlink bitrate
• Maximum total downlink bitrate
• Downlink bitrate
• Uplink bitrate
• Uplink Modulation and Coding Scheme

(MCS)
• Downlink MCS
• Uplink Signal to Interference plus Noise

Ratio (SINR)
• Channel quality Indicator (CQI)

Platform (All
Containers)

cAdvisor
Exporter
collects metrics
from DUs, CUs

• CPU usage
• Memory usage
• Network statistics
• Filesystem utilization
• Container metrics as per [15]

Infrastructure
(Host
Machine)

Node Exporter
collects from
the host system

• CPU usage
• Memory utilization
• Disk I/O metrics
• Filesystem statistics
• Network metrics such as packet

transmission rates, errors
• Node temperature and power
• Additional telemetry as per [18]

Fig. 4: Traffic distribution generated by ping messages.

instances of O-RAN components deployed in the considered
testbed by forcing high CPU contentions and exhausting
memory capacity. During this process, some packet loss may
occur. Thus, to emulate the packet loss close to the real-time
scenario, the tc tool is used to introduce some packet losses
on the interface connecting RAN instances in our setup (refer
to Fig. 3).

The various types of faults we inject are described in the
following:

• CPU stress test: In this test, we stress the CPU cores
assigned to different O-RAN components like CUs and
DUs, and monitor the impact by collecting telemetry
data at different levels as shown in Table II. Depending
on the CPU resource demands of various components,
each of these components is expected to show some
negative impact of insufficient CPU resources in terms of
anomalous behavior at certain stress levels, which could
be captured through the telemetry data being collected at
various levels in the system.

• Memory stress test: In this test, we stress the memory
allocated to different CUs and DUs to mimic memory

Algorithm 1: Fault Injection Procedure

1

Require: X = CU ∪ DU ; // Set of CUs
and DUs to be monitored in the O-RAN
deployment

1: Sample fault duration T1 ∼ Exp(λ) | T1 ∈
[30, 90]minutes ; // Exp(λ) is an
exponential distribution

2: Select fault type F using a multinomial distribution:

PF (0) = 0.3, PF (1) = 0.5, PF (2) = 0.1, PF (3) = 0.1

; // F = 0: Normal, F = 1: CPU
Stress, F = 2: Memory Stress, F = 3:
Packet Loss

3: for each container C ∈ X do
4: Decide to inject stress using a Bernoulli distribu-

tion:

P (Stress = 1) = 0.4, P (Stress = 0) = 0.6

5: if Stress = 1 then
6: if F = 1 (CPU stress) then
7: Sample Start stress ∼ U(0.4, 0.9) ; // CPU

stress is selected between 40%
and 90%

8: Sample End stress ∼ U(Start stress, 1.0)
; // End stress is greater than
or equal to Start stress

9: Execute CPU stress in container C from the
selected Start stress to End Stress for T1

duration
10: else if F = 2 (Memory stress) then
11: Sample Start stress ∼ U(0.25, 0.35) ;

// Memory stress is selected
between 25% and 35%

12: Sample End stress ∼ U(Start stress, 0.6)
13: Execute Memory stress in container C from

the selected Start stress to End Stress for T1

duration
14: else if F = 3 (Packet loss) then
15: Sample Start stress ∼ U(0.01, 0.03) ;

// Packet loss is selected
between 1% and 3%

16: Sample End stress ∼ U(Start stress, 0.05)
17: Execute Packet loss in container C from the

selected Start stress to End Stress for T1

duration
18: end if
19: else
20: No stress is injected into container C for T1

duration
21: end if
22: end for
23: Repeat from Step 2 for the desired number of itera-

tions

leaks and memory contentions. The negative impact is
monitored by collecting telemetry data at different levels
as shown in Table II.

• Packet loss test: In this test, we emulate partial link faults
and congestion scenarios by introducing packet losses
using the tc tool.

To inject these faults systematically in the considered setup,
we follow the procedure given in Algorithm 1, where the
selected O-RAN components are induced with stress for
certain time windows.

Note that the data is collected continuously with normal
and faults injection scenarios, with 65, 765 samples used for
training and testing. As shown in Fig. 2, we created an ML
pipeline with k = 60 and m = 5, where k represents the
considered backward steps and m represents prediction step.
The retraining of the considered ML pipeline depends on the
topology changes, addition or deletion of features, etc.

C. Classifier Selection

We also evaluated two more classifiers (XGBoost and
AdaBoost) along with RF for predicting faults based on the
forecasted telemetry in the FALCON framework.

V. PERFORMANCE EVALUATION

The proposed FALCON framework was evaluated using
stratified 5-fold cross-validation to predict future telemetry
and classify it as normal or fault types (CPU Stress, Memory
Stress, and Packet Loss). The accuracy of FALCON shown in
Table III is obtained using 10 PCA features from 403 initial
features, which leads to ≈ 94.2% reduction in features and
the average RMSE value of 0.05789 is achieved for predicted
features after inverse PCA (before de-normalization).

TABLE III: Averaged Performance of FALCON Across All
Folds

Metric Value
Accuracy 98.73%
F1-Score 98.71%
Macro Average Precision 96.70%
Macro Average Recall 97.00%
Macro Average F1-Score 96.56%
Weighted Average Precision 98.81%
Weighted Average Recall 98.73%
Weighted Average F1-Score 98.71%

A. Interpretation of Results

FALCON demonstrated exceptional performance across all
folds, achieving an average accuracy of 98.73%. Table IV
presents the average confusion matrix, which shows that the
model accurately classified most of the samples for each class
with minimal misclassifications. Notably, the normal and CPU
stress classes were classified with very good accuracy, while
a few misclassifications were observed for the memory stress
and packet loss classes.

Fig. 5 shows Accuracy, Precision, Recall, and F1-score of
FALCON for three different classifiers. Random Forest, which
is employed by FALCON by default, outperforms XGBoost

TABLE IV: Average Confusion Matrix Across All Folds

True/Pred Normal CPU Stress Memory Stress Packet Loss
Normal 4693.2 2.0 7.8 1.2

CPU Stress 45.6 7012.4 50.4 7.4
Memory Stress 1.0 6.4 859.4 2.0

Packet Loss 8.0 3.6 31.2 421.4

and AdaBoost due to its ensemble nature, which allows it
to generalize well to unseen data. XGBoost and AdaBoost
struggled with outliers/noisy data and got skewed towards
those anomalies as both focus on learning from mistakes made
by previous iterations which leads to overfitting issues.

Fig. 5: Average Performance of Different Classifiers in FAL-
CON Framework Across All Folds.

Table V provides the average classification report, highlight-
ing FALCON’s outstanding precision, recall, and F1-scores
across all classes. The model achieved very good scores for
the normal and CPU stress classes, with slightly lower but
still good scores for memory stress and packet loss classes.
Specifically, the F1-score for the CPU stress class was 99.18%,
reflecting the framework’s reliability even for challenging
classifications.

TABLE V: Average Classification Report Across All Folds in
FALCON Framework

Class Precision Recall F1-Score
0 (Normal) 0.9888 0.9976 0.9931

1 (CPU Stress) 0.9982 0.9854 0.9918
2 (Memory Stress) 0.9109 0.9891 0.9471

3 (Packet Loss) 0.9702 0.9077 0.9304

VI. CONCLUSIONS AND FUTURE WORK

Designing a fault-proof system that uses anomalies to
predict faults in advance and takes corrective measures is
challenging due to the high dimensionality of telemetry data
in virtualized O-RAN deployments. FALCON, our proposed
framework, addresses this challenge by using PCA for dimen-
sionality reduction and LSTM forecaster for KPI forecasting.
It successfully forecasts anomalies to predict faults up to
5 seconds (or 5 time steps) in advance, enabling proactive
decision-making by the operators. FALCON demonstrated

strong performance with an average accuracy of 98.73% and
F1-score of 98.71%, across all folds of the stratified n-fold
cross-validation. The confusion matrix and classification report
show minimal misclassifications, highlighting its robustness.

Future work involves creation of a dataset on an emulated
testbed consisting of a large number of O-RAN components
and UEs to mimic real-world deployment scenarios with a
greater number of faults and simultaneous fault cases. Subse-
quently, we plan to focus on root cause analysis to localize
faults to be able to take preventive measures in a timely
manner.

ACKNOWLEDGMENTS

This work was partially supported by Intel India and Visves-
varaya PhD Scheme, Meity, Govt. of India. The authors would
like to thank Abdulla Ovais and Michael Suguna Kumar V
for their help in designing ML pipeline of the FALCON
framework.

REFERENCES

[1] “O-RAN: Towards an Open and Smart RAN,” O-RAN Alliance, Tech.
Rep., 2018.

[2] S. Cherrared, S. Imadali, E. Fabre, G. Gössler, and I. G. B. Yahia, “A
Survey of Fault Management in Network Virtualization Environments:
Challenges and Solutions,” IEEE Transactions on Network and Service
Management, vol. 16, no. 4, 2019.

[3] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,” in
IEEE International Symposium on Software Reliability Engineering,
2016.

[4] S. Mukherjee, O. Coudert, and C. Beard, “An open approach to
autonomous ran fault management,” IEEE Wireless Communications,
vol. 30, no. 1, pp. 96–102, 2023.

[5] S. Ramanathan, K. Kondepu, and A. Fumagalli, “Resiliency in Open-
Source Solutions for Disaggregated 5G Cloud Radio Access and Trans-
port Networks,” in IEEE NFV-SDN, 2022, pp. 124–129.

[6] S. Ramanathan, A. Bhattacharyya, K. Kondepu, and A. Fumagalli,
“Enabling containerized Central Unit live migration in 5G radio access
network: An experimental study,” Journal of Network and Computer
Applications, vol. 221, p. 103767, 2024.

[7] J. Xing, J. Gong, X. Foukas, A. Kalia, D. Kim, and M. Kotaru, “Enabling
Resilience in Virtualized RANs with Atlas,” in Proceedings of ACM
Mobicom, 2023, pp. 1–15.

[8] A. Bhattacharyya, S. Ramanathan, A. Fumagalli, and K. Kondepu,
“Towards Disaggregated Resilient 5G Radio Access Network: A Proof
of Concept,” in IEEE 9th International Conference on Network Soft-
warization (NetSoft). IEEE, 2023, pp. 396–401.

[9] N. M. Yungaicela-Naula, V. Sharma, and S. Scott-Hayward, “Miscon-
figuration in O-RAN: Analysis of the impact of AI/ML,” Computer
Networks, vol. 247, p. 110455, 2024.

[10] C. Sun, U. Pawar, M. Khoja, X. Foukas, M. K. Marina, and
B. Radunovic, “SpotLight: Accurate, explainable and efficient anomaly
detection for Open RAN,” in Proceedings of ACM Mobicom, 2024, pp.
923–937.

[11] “O-RAN Software Community (SC) Near-Real-time RIC (i-release),”
https://github.com/srsran/oran-sc-ric, 2025.

[12] “srsRAN Project,” https://www.srsran.com/5g.
[13] “open5gs,” https://github.com/open5gs/open5gs, 2025, release v2.7.2.
[14] “nodeexporter,” https://hub.docker.com/r/prom/nodeexporter, 2025, re-

lease v2.7.2.
[15] “cAdvisor,” https://github.com/google/cadvisor, 2024.
[16] “prometheus,” https://prometheus.io/, 2025, release 3.1.0.
[17] “influxdb,” https://www.influxdata.com/, docker Influx Version 2.7.
[18] “Node Exporter,” https://github.com/prometheus/node exporter, 2024.
[19] “stressng,” https://github.com/ColinIanKing/stressng, 2025, release

V0.18.09.

