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ABSTRACT

The entanglement swap primitive facilitates the establishment of
shared entanglement between non-adjacent nodes in a quantum
network. This shared entanglement can subsequently be used for
executing quantum communication protocols. The fundamental
problem in quantum networks is to determine a path for entangle-
ment swapping in response to demands for entanglement sharing
between pairs of nodes. We investigate variants of this problem in
this work.

We propose a framework of Greedy algorithms that can be
tweaked towards optimizing on various objective functions. In
conjunction with a novel Spatial and Temporal (split across multi-
ple paths) splitting approach to entanglement routing, we use this
framework, which we call GST, to investigate the scenario when
the demands are specified in terms of a starting time and a dead-
line. Considering the fragile nature of quantum memory, “bursty”
demands are natural, and therefore the setting is important.

We study the algorithm for maximizing the number of satisfied
demands and the number of entangled pairs shared. We report em-
pirical results on the performance against these objective functions,
and compare with a naive algorithm that involves neither temporal
and spatial splitting of the demands, nor the greedy approach to
scheduling the demands.
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1 INTRODUCTION

Quantum Networks are next-generation networks used to com-
municate quantum information across quantum nodes [1]. An im-
portant primitive for quantum communications is entanglement
sharing-the sharing of entangled particles between two quantum
nodes. Once an entangled pair is shared, interesting protocols like
quantum teleportation can be accomplished.

For sharing EPR! pairs between “distant” quantum nodes, quan-
tum repeaters are used, which employ “entanglement swapping"
protocols to achieve the objective [2, 3]. In this work, we assume a
quantum network with quantum nodes that can generate demands
for EPR sharing as well as act as repeaters. The presence of an edge
between two quantum nodes indicates the presence of a direct (op-
tical fiber-based) link for quantum and classical communications.
EPR pairs can be trivially shared over such links. The problem, at a
high level, is to find a path between two nodes on the quantum net-
work, on which the entanglement swap protocol can take place. On
successful execution of the protocol, EPR pairs are shared between
the two nodes. We discuss some of the ideas that are prerequisite
to our work, in Section 2.1.

A significant body of work exists for finding entanglement swap
paths that optimize on various parameters like path length, fidelity
and time bounds (please see Section 2 for a quick review). In this
paper, we study a simple yet useful variant of the EPR sharing
problem. The lifetime of quantum memory elements (coherence
times) is very low. For applications that require (say) local unitary
operations on multiple EPR pairs at one node, it is essential to have
all the EPR pairs shared within a short span of each other, as a
burst. In other words, a “demand" to share a given number of EPR
pairs between two nodes i and j is also accompanied by a start time
si,j and a deadline e; j, s; j < e; j, during which all the EPR pairs
have to be shared. To the best of our knowledge, there has been no
attempt to maximize the number of satisfied demands under the
burst condition.

We treat the quantum network as a resource for which demands
are submitted for an operational time epoch of length T time units
([0, T — 1]). Demands for EPR exchange are submitted in advance
and they scheduled to be serviced in the operational time epoch of

! A maximally entangled pair, named after Einstein, Podolsky and Rosen.
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[0, T—1]. This “static" picture of the quantum network as a resource
is particularly relevant when the nodes are processing elements of
the same quantum system.

We design a greedy heuristic framework that can be used for
different objective functions. In the context of the burst application,
we apply the framework to maximize the number of demands satis-
fied, and the number of EPR pairs shared overall. The framework is
a generic one, and can be instantiated to yield different algorithms
towards optimizing for different parameters.

While earlier works exist that split the demands among multiple
paths, a novel feature of our approach is that we split the demands
both in terms of time and across multiple paths whenever possible,
while respecting the burst constraints.

The paper is arranged as follows. Section 2.2 briefly reviews
existing literature, particularly with the objective of comparing and
contrasting with our approach. We present the Greedy framework
with Spatial and Temporal splitting (GST) in Section 3. In Section 4,
we discuss empirical results wherein we compare the GST approach
against a naive approach that simply processes the demands in the
order in which they are presented. Finally, we conclude the paper
in Section 5.

2 BACKGROUND

In this section, we will first discuss some basic theory of quantum
networks required for reading this paper, followed by a brief survey
of related work in the area. We then present the formal problem
statement addressed in this paper.

2.1 Quantum Networks Basics

We begin with a very brief discussion of quantum communications
prerequisites. For details, please see the classic text by Nielsen and
Chuang [4]. A quantum state is described by a unit norm vector
in a Hilbert space. The quantum analogue of a bit, the so-called
qubit, is such a vector in a two-dimensional Hilbert space. Entan-
gled qubits are a very useful and interesting resource in quantum
computing and communications. We will be interested in pairs of
such “maximally" entangled qubits, called EPR pairs. Described

by the state vector M, this system is central to important

quantum communication protocols like teleportation.

For such protocols to execute between two quantum nodes, one
particle in each of the EPR pairs has to be shared between them.
The distribution of EPR pairs is easiest if the quantum nodes are
adjacent to each other in the network. If separated by multiple
edges, then an entanglement swapping protocol accomplishes the
task of EPR distribution. Consider quantum nodes a, b and c, with
an edge (that is, a fiber optic link) between a and b, and b and c.
Entanglement swapping converts EPR pairs between a and b, and b
and c to a shared EPR between a and c. Thus there are two key oper-
ations in entanglement swapping: (i) entanglement generation (and
distribution between adjacent nodes) and (ii) the so-called Bell State
Measurement that results in the above mentioned conversion [2, 3].

This protocol can be lifted to longer paths in the quantum net-
work. It is easy to see that O(log n) entanglement swap operations
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are required to distribute EPR pairs between the end nodes of a
path of length n. 2

A central problem in quantum networks is to identify the best
path along which entanglement swapping can be carried out, given
a demand for a number EPR pairs to be established between two
nodes in the quantum network.

2.2 Previous Works in Quantum Networks

Before delving into previous literature, we introduce some termi-
nology informally. Formal definitions, when necessary, follow in
the next section. We will refer by the word demand, a request for
sharing some d number of EPR pairs between nodes i and j. A
demand is said to be satisfied, if the d EPR pairs are successfully
shared between i and j.

Given its importance in quantum networks, the problem of es-
tablishing routes for entanglement swapping has been investigated
extensively in the recent past. We now discuss briefly some of this
work, for perspective.

Van Meter et al. [5] were among the earliest to study centralized
quantum routing protocols. They used the shortest path first algo-
rithm for selecting routing paths. However, they do not explicitly
provision for both temporal and spatial (across multiple paths in
the network) path splitting for maximizing the objective functions.
Also, they did not consider time bounds between which a demand
has to be satisfied. Naturally, there has been a significant body of
work that employs shortest path algorithms in some form. A recent
example is the work of Jian et al. [6], who use these algorithms for
finding paths with fidelity guarantees using optimal entanglement
purification decisions with respect to resource utilization.

Several works have leveraged the algorithms and (LP) optimiza-
tion techniques available in the classical networks’ domain to solve
the quantum routing problem posed as flow problems. For example,
Chakraborty et al. [7] posed the problem in terms of multicommod-
ity flows. They used the LP formulation for the problem to extract
the required paths, with end-to-end fidelity as a requirement.

Closer to this work, Cicconetti et al. [8] focus on request sched-
uling in addition to path selection. They call as scheduling, the act
of allotment of a time slot in an epoch for a demand. Towards this,
they develop a framework of heuristic algorithms. However, they
do not focus on temporal and spatial splitting of the demands.

Splitting of demands across multiple paths has been noted to be
superior by several works [9]. For the shared entanglement to be
useful, it is important for the final state vector to have high “fidelity”
— that is, be as close as possible to the maximally entangled EPR state.
Several works have sought to provide guarantees on fidelity [10—
12]. Opportunistic approaches for routing, both in terms of quality
of next hop [10] and fastest availability [13] have been explored.
Cicconetti et al. [11] also point out important differences between
communication and distributed quantum communication applica-
tions, and the consequent need for different approaches for the two.
Rabbie et al. [14] considered the problem of optimal placement of
specialized quantum repeaters on existing classical infrastructure,
satisfying requirements on EPR pair generation rates and fidelity.

%In case a particular swap operation fails, because for example, an EPR pair decoheres
or a Bell State Measurement fails, then this number increases. However, this is still a
good estimate.
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Caleffi [15] focussed on the co-design of routing algorithms and
routing metrics. He showed that a metric that is optimal for one
algorithm may not be optimal for another (for example, Dijkstra
or Bellman-Ford based). Chakraborty et al. [16] who studied rout-
ing in a distributed fashion, especially on the context of “virtual
links" — links that are not optical fiber, but shared entanglements
themselves, to be used as a resource for swapping. Indeed, there
is significant ongoing research in developing quantum internet
protocol stack and architecture [17]. We refer the interested reader
to the excellent survey by Illiano et al. [18] for more details and
further references.

2.3 Problem Statement
Input:

(1) A directed graph® G = (V,E) representing the quantum
network, where a directed edge from quantum node i to
quantum node j is represented by (i, j) € E. Every directed
edge (i, j) is labeled by a capacity c;;j. Physically, a directed
edge (i, j) with capacity c;; € Z* represents the ability of
node i to initiate sharing of c;; EPR pairs (per unit time)
with j. This graph can be encoded as an adjacency matrix A
where an entry A; ; is an integer that captures c;j.

(2) A demand matrix D, where the entry D; ; stands for the
number of EPR pairs requested between nodes i and j, by
node i.

(3) Time Constraint Matrix T; j, each element of which is a tuple
(sij. i), with s;; < e;j € Z* . The entries s; ; and e; ;
denote the lower and higher time boundaries respectively,
between which the demand D; ; must be satisfied. The inter-
val [s; j, e; j] is a burst, and we refer to e; j — s; j, as the burst
length. Note that max (e;,j) is at most the epoch boundary T.

Output:

o A schedule of allocation of entangled pairs on each edge,
within the time epoch T.

The output, which is essentially a schedule for the serving var-
ious demands, may optimize different objective functions under
different constraints.

For example, we may seek to maximize the number of demands
satisfied within the time horizon T, or the number of EPR pairs
shared within T.

In this work we assume that the EPR pairs are replenished con-
tinuously among neighbouring vertices.

3 THE GREEDY FRAMEWORK

In this section, we discuss a greedy approach to maximize, inde-
pendently, the number of demands satisfied and the number of
EPR pairs distributed within the time epoch T. The same algorith-
mic framework works for both and differs only in the sequence in
which the demands are taken up for processing. In particular, the
preprocessing steps are the same.

Preprocessing Steps

(1) For each demand D; j, find the shortest path. The path length
is defined in terms of the hops. If there are two paths of equal

3We use the terms graph and quantum network interchangeably in this paper.
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t=1

t=3

Figure 1: Illustration of time taken in establishing end-to-
end entanglement.

length, select the one with the higher value of the smallest
EPR on the shortest path.

(2) As mentioned earlier, for any source and destination pair,
the time taken for establishing the end-to-end entanglement
is proportional to the log of the path length Fig. 1. Therefore,
if the path length is such that the time taken for end-to-end
entanglement establishment takes more than the end time
constraint, we discard such demand. In other words, for a
demand D; j, let the shortest path length be n. If log(n) > e; j
then discard the demand.

During the pre-processing, the algorithm finds the shortest path
for all the demands. For a demand D; j, if the length of the shortest
path is such that the time for EPR sharing between i and j is more
than e; j, then the demand is dropped in the pre-processing itself
(Step 2 of pre-processing). If the shortest path itself cannot meet
the deadline, longer ones will not. The log n term appears because
of the nature of the entanglement swap primitive-Q(log n) swaps
are needed for sharing entanglement between two nodes that are n
hops apart.

The algorithmic framework is detailed in Algorithm 1. The sort-
ing criterion in Step-1 is decided by the objective that we seek to
maximize. We list the two sorting criteria below, before proceeding
to the main algorithm.

Objective 1: Maximizing the number of demands satis-
fied: The demands are sorted in increasing order of e; ;. If two
demands have the same e; j then priority is given to the demands
with lower EPR demand. This step aims at finishing demands with
fewer EPR demands first, thereby accommodating more demands
on the timeline. If two demands have the same e; j constraints and
EPR requirements, then priority is given to the demand which has a
shorter shortest path since it will take less time to establish end-to-
end entanglement. If all three parameters are the same for multiple
demands then the algorithm breaks the tie randomly.

Objective 2: Maximizing the number of demanded EPR
pairs shared: The greedy choice for this objective function is to
place demands with higher EPR requirements earlier in the se-
quence. The tie-breaking logic will be similar to that in the previous
objective. Therefore, the algorithm will greedily pick the demands
with larger EPR requirements first, thereby increasing the number
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of EPR pairs distributed. Note that it may impact the number of Algorithm 1:
demands served and demands with lower EPR pair requirements Initialization :
may starve.

(1) Sort the demands // Sorting criteria depends on objective

(2) Timeline length T < max(e; ;)

(3) Define Al{j =Ajjforo<t<T

(4) Number of EPR pairs distributed E « 0

(5) Number of demands served d « 0

(6) RD is the ordered list of demands that are yet to be served
or have been partially served, where each element RD; ;
contains the remaining EPR pairs still needed by the
demand Di,j and initially RDi,j — Di,j

(7) Schedule variable SCHD of the size T

(8) while RD is not empty or Change in RD; j over last iteration

In the case of objectives 1 and 2, we assume that all the demands
are available at t=0. In other words VD; j,s; j = 0.

Objective 3: Maximizing the number of demands satisfied
with different starting times: This use case assumes that for a
given time period 0-T, information about each demand is known
beforehand. Additionally, the demands have different start times
si,j. The demands must be satisfied between the lower and upper
time-bound. In this use case, the greedy choice for this objective
function is to arrange demands with the lower value of shortest
path length followed by lower time constraint difference (e; j — s;,;)
followed by lower EPR requirement and so on. This use-case helps

illustrate the concept of bursts. !=0do
We now discuss the algorithm in detail. The topology of the fore.ach R? i.j do
itr «

quantum network is defined by an adjacency matrix A. The element

(A;,j) of the adjacency matrix holds ¢; j. As the demands get allotted, pathLength « length of the itr-th shortest path

the number of available EPR pairs on an edge may change. We whil/e pathLength <2°¢757 do
denote by Af_’j, the state of the matrix at time instant ¢. t s y
Because of our assumption of instantaneous replenishment, A; ; while t < e; j — log(pathLength) do
reduces only when a request is scheduled, reserving the shared let SEPR = smallest shared EPR value in ( Af,.)
entanglements for the scheduled demand (Steps 3 and 7 of the "

algorithm). on the itr-th shortest path between i & j

We first discuss splitting a demand Dj j in time, also called tem-
poral splitting. The algorithm works by greedily choosing a demand
D; j from the sorted sequence of demands and schedules it fully or
in part p1 < D; j att = 0 on the shortest path between nodes i and

schedule RDj j for execution at t = ¢

if SEPR > 0 then

if SEPR < RD; j then

Append [(i,j), sEPR] to SCHD[¢ ]

Jj. After completion of first part p1, the demand can be scheduled in E «— E+sEPR
full or in part (p2) again, and so on until time step e; j or 3. p; = Dj j, RD;j « R/Di,j - fEPR
whichever happens earlier. Immediate scheduling along the same Update Altm - A; = SEPR with I, m
path is possible because of instantaneous replenishment. be the intermediate nodes on the
In case demand is not fully met, the algorithm finds the next shortest path for D; ;

shortest path in the next iteration. It runs temporal scheduling

£ =t +1 thLength
again on that path until the e; ;. This scheduling will work across og(pathLength)

multiple paths in each iteration, in increasing lengths of paths. clse . /

This is the spatial scheduling of the demand across multiple paths. Append [(i,), RD; ;] to SCHD[t ]

We only consider paths that are at most k hops in length, for a E < E+RD;;

small k of our choice. The algorithm returns the count of EPR RD;j < 0

pairs, demands served and a schedule of the demands through the de—d+1

proposed scheduling mechanism. Fig. 2 illustrates the working of Update A; /m = Alt,m ~RD;j with I,m

the algorithm with an example. be the intermediate nodes on the
shortest path for D; ;

3.1 The GST and the Naive f=e;

We refer to the Greedy framework above, coupled with the Spatial end

and Temporal splitting technique as the GST technique. To assess else

the quality of the solution, we use a “naive" algorithm that incor- | ¥ =¢ +1

porates none of the above techniques. The naive algorithm tries end

to find a path for entanglement swap in the order in which the
demands are presented. Further, it does not perform any temporal
or spatial splitting.

end
itr < itr+1
pathLength « length of the itr-th shortest path

. . end
3.2 Computational Complexity end
We now assess the worst case time complexity of our algorithm. end
The worst case scenario for Algorithm 1 is a complete graph with a Output .E, D, SCHD

demand set where all demands need to be split across all the paths
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We have a graph G of 5 vertices and the capacity (number of EPR pairs
that can be generated per timestep) is shown along each edge.

At timestep 0, the availability matrix looks as follows

0
0

0

0
2
0
2

o

We have a remaining demand list RD = [(ul, u5, 5, 2), (u2, u4, 6, 8),
(ul, u3, 5, 4)] and we illustrate the algorithm for one demand

satisfaction.

The algorithm picks the first demand from this list and starts to generate
as many EPR pairs as possible through the shortest path (ul-ud-u5) at
t=0. Two EPR pairs can be shared through this path at timestep 1.
Therefore our resource availability matrix becomes:

0
1
A= |2

1

ln

1
0
0

| SREN

2
0
0
4

0

1
1
1
0
0

and the remaining demand list becomes
RD = [(ul, u5, 3, 2), (u2, u4, 6, 8), (ul, u3, 5, 4)]

0

In the next timestep, t=2, since the deadline (tu.. .. = 2) for demand has
not yet passed, we make use of the same shortest path (temporal
splitting) and again obtain two EPR pairs. The remaining demand list then

becomes:

RD = [(ul, u5, 1, 2), (u2, u4, 6, 8), (ul, u3, 5, 4)]
The resource availability matrix A* remains unchanged as the EPR pairs

are replenished instantly.

In the next timestep t=3, since the deadline is reached, we cannot
continue using the same path. However, since the demand still requires
one more EPR pair, we move onto the next shortest path.

The next shortest path is (u1, u2, us). The algorithm again begins at
timestep t=0 and starts to schedule EPR generations along this path. This
shows that there will be two parallel generations for the first demand at
t=0; one through (ul-u4-u5) and the other through (uil-u2-u5). This is
an example of spatial or path splitting. The algorithm schedules the
generation of two EPR pairs through this path and the first demand will

be completely satisfied.

RD = [(u2, u4, 6, 8), (ul, u3, 5, 4)]

S ]

Ab —

92

0

n'|
0
._,‘
0

o]

Figure 2: An example showing the working of the proposed algorithm.
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at every time step. We consider at most k-hop paths for demand
satisfaction in the Algorithm. The total number of k hop paths
between any source-destination pair in a complete graph with |V|
vertices are Zle (Hjl\_—lz
are considered for entanglement swapping during 0 < ¢t < T for all
the demands D; j € D. So the total time complexity of the algorithm

is O(T.|D|. Z§:1 (l‘;L_lz)(j —1)!), where we denote by |D|, the total
number of demands. Notice that while having a longer epoch length
T increases the time complexity, it helps in satisfying more demands.

We also note that for k = 2, which we use in this paper, the term

)(j—1)!. In the worst case, all of these paths

21;21 (|XJ/|_—12) (j — 1)) is linear in the number of quantum nodes,
leading to a worst case time complexity of O(T.|D|.|V]).

4 RESULTS

We now empirically show how the performance (in terms of the
fraction of demands that are satisfied, and in terms of the number
of EPR pairs eventually shared in the epoch [0, T]) scales against
different size settings—larger number of nodes, larger density, more
demands, more EPR requests per demand and different burst sizes.
As baseline, we use a naive algorithm, that (a) does not perform
spatial or temporal splitting and (b) services the demands in order
of their generation.

In all the experiments, we use Erdés-Rényi (ER) random graphs.
We choose ER without loss of generality—it can be a graph generated
in any other manner.

Other parameters are listed below. In experiments where these
parameter settings are changed, it will be stated explicitly. We em-
phasize that these parameters are chosen for purpose of illustration
and may be changed.

|V] and p (parameters for ER graph): 50 and 0.2 respectively.
¢i,j: Chosen uniformly at random in [1, 5] for all edges.

For a pair of nodes i, j chosen uniformly at random from a
Cartesian product of nodes, we choose demands D; j uni-
formly at random between 1 to 9.

e For a demand D; j, choose e; ; uniformly at random between
5and 10 and s; j uniformly at random between 1 and e; ;.
Path length limit: 2. In all the simulations, shortest paths of
length 1 and 2 are considered.

We now discuss the results of these experiments in turn.

4.1 Size of the Quantum Network

To evaluate the impact of an increase in the number of quantum
nodes, we change |V| from 10 to 150 in steps of 10. Fig. 3 shows the
results. We notice that both the fraction of demands satisfied and
EPR pairs shared increases with an increase in the number of nodes—
an increase in the number of nodes in an ER graph is accompanied
by an increases in the number edges, and therefore paths. Therefore,
the number of alternative paths available increases, which yields the
result. We also note that our GST approach performs significantly
better than the naive approach.

4.2 Number of demands

In this experiment, we increase the number of demands, keeping
other parameters constant. The results are shown in Fig. 4. As
expected, the fraction of demands satisfied and EPR pairs shared
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—==- Fraction of EPRs served using Greedy Algorithm
Fraction of EPRs served using Naive Algorithm

—— Fraction of demands served using Greedy Algorithm

----- Fraction of demands served using Naive Algorithm

1.0 1

0.8 A

0.6 1

Fraction

0.4 1

0.2 1

0.0 T T T T T T T
20 40 60 80 100 120 140
Graph Size (no of Nodes)

Figure 3: Plot showing the fraction of demands and EPR pairs
distributed with increasing number of quantum nodes.

decreases with an increase in demand size. The naive algorithm
performs significantly worse. Moreover, it deteriorates slightly with
an increase in the number of demands, starting from a demand
satisfaction rate of 0.16 at 100 demands to 0.14 at 1000 demands,
and EPR rate of 0.052 to 0.046.

—==- Fraction of EPRs served using Greedy Algorithm
Fraction of EPRs served using Naive Algorithm

—— Fraction of Demands served using Greedy Algorithm

----- Fraction of Demands served using Naive Algorithm

0.8 1

0.7 14

0.6 A

0.5 A

Fraction

0.4 1

0.3 1

0.2 1

0.11

200 400 600 800 1000
No of demands

Figure 4: Plot showing the fraction of demands and EPR pairs
distributed with an increasing number of demands.
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——~ Fraction of EPRs served using Greedy Algorithm
Fraction of EPRs served using Naive Algorithm

—— Fraction of demands served using Greedy Algorithm

Fraction of demands served using Naive Algorithm

0.8 1

0.6

0.4 1

Fraction

0.2 1

0.0 1

1 2 3 4 5 6 7 8 9
Demand Size (No of EPRs)

Figure 5: Plot showing the fraction of demands and EPR pairs
distributed with increasing size of the EPR per demand.

4.3 Number of EPR pairs per demand

We fix the number of demands at 25. Initially the number of EPR
pairs per demand is picked randomly between 1 and 3. Subsequently,
we increase the number of EPR pairs per demand in steps of 1, for 10
times. With an increase in the EPR size per demand for a fixed graph,
the fraction of EPR pairs shared and demands satisfied decreases
almost linearly (Fig. 5). The naive algorithm fails to satisfy even one
demand, after two iterations of EPR increase per demand. When
the demand size increases beyond this threshold, the edge capacity
ci,j is simply not sufficient to satisfy even one demand.

4.4 Graph density

To change the density of the graph, we changed the ER probability
parameter p from 0.1 to 0.9 with an increment of 0.1. We fixed the
number of demands at 100. The results are shown in Fig. 6. We see
that there is a sharp rise in the fraction of demands satisfied and
EPR pairs distributed, before it reaches 1. This is because an increase
in density results in an easy availability of alternate paths, along
which entanglement swapping can take place. After a threshold
density, all demands are satisfied. The effect of providing alternative
paths is so significant that even the naive algorithm performs better
on denser graphs. The rate of growth in our approach is much
steeper when compared to the naive algorithm because it leverages
the availability of alternative paths better.

4.5 Burst Time

Bursts can have an impact on the network in multiple ways. Firstly,
shorter burst requirements leave lesser room for scheduling on
the network than longer burst requirements. Moreover, if many
short burst demands overlap temporally, it leaves lesser room for
scheduling. We report experiments to confirm this intuition.
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Figure 6: Plot showing the fraction of demands and EPR pairs
distributed with increasing density of the graph.

4.5.1 Fixed Start Time with Increase in Burst Duration. In this ex-
periment, the start time for each demand is chosen uniformly at
random in the range [0, 5]. For each demand, the burst duration
is chosen uniformly at random in [1, 10]. The end time of a burst
is determined by adding the burst duration to the start time. The
result is shown in Fig. 7. As expected, the fraction of demands sat-
isfied and EPR pairs shared increases with an increase in the burst
duration, for the GST approach. On the hand, while they increase
in the naive approach as well, they hit saturation very quickly. The
only increment in the fraction happens when there is flexibility in
scheduling the demand in a “monolithic" manner with an increase
in the burst time. However, since the naive approach does not in-
volve temporal splitting of demands, it cannot benefit from a longer
burst duration.

4.5.2  Clustered and Scattered Demands. To study the impact of
clustering of demands, we design the following experiment. Clus-
tered demands all start at 0 and end at 10. Scattered demands can
have any start time in [0, 9] and a burst duration of 10. Therefore,
10 < T < 20 in this experiment. We study the effect of increasing
the number of clustered and scattered demands on the network
performance. The results are shown in Fig. 8. With an increasing
number demands, the performance degrades in all cases. However,
as expected, scattered demands result in the best performance when
compared to clustered demands.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we proposed a greedy framework that also employs
temporal and spatial split of demands. We also introduced the idea
of demands having a burst time, specified in terms of an allow-
able starting time and deadline to complete. We believe that this
restriction is natural and relevant, considering that the lifetimes of
quantum memory are limited at present. The approach discussed
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Figure 7: Plot showing the fraction of demands and EPR pairs
distributed in case of increasing burst time.
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Figure 8: Plot showing the fraction of demands and EPR pairs
distributed comparing clustered and scattered demands.

in this work yields an easy-to-use tool to investigate different algo-
rithms for scheduling the demands, and the impact of burst time
restrictions on network performance.

There are some aspects of routing that we ignored in this paper.
How robust is the GST approach in the presence of entanglement
generation and Bell State Measurement failures? How much fidelity
does the approach guarantee? While investigation from these stand-
points could perhaps necessitate some changes in the approach, we
envisage that the required changes would be small.
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This work suggests several future directions of inquiry. What
are the important metrics or objective functions against which the
framework can be applied? Does this greedy heuristic yield guaran-
teed performance bounds? Can this framework be easily modified
for the “dynamic" scenario, where the demands are streaming in
an online fashion?
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