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Abstract—Enabling widespread adoption of resource-intensive
vehicular applications such as Extended Reality (XR) and High
Definition map (HD Map) necessitates further enhancements in
5G, which is anticipated with 5G-Advanced. These applications,
sensitive to latency, prompt researchers to propose offloading
vehicles’ complex computations to nearby edge clouds, aiming
to minimize latency and meeting the Quality-of-Service (QoS)
demands of these applications. However, the uncertainties arising
from spatio-temporal factors due to vehicle mobility and the
dynamic nature of application behaviour pose significant chal-
lenges in deciding the efficient offloading decision for minimizing
latency. To tackle this challenge, this paper introduces a cross-
layer framework that bridges the Radio Access Network (RAN)
scheduler with the Mobile Edge Computing (MEC) scheduler. The
proposed framework facilitates the exchange of vehicle ranks and
channel condition information between schedulers, strategically
aimed at reducing Head-Of-Line (HOL) delay for efficient com-
putational offloading. Furthermore, the MAC layer incorporates
the prediction of the Buffer Status Report (BSR) using Machine
Learning (ML) to further reduce the queuing delay experienced
by the offloading jobs of the vehicles in uplink. Simulation results
using the NS-3 gym demonstrate that the proposed cross-layer
framework achieves a higher Offloading Success Rate (OSR) than
the state-of-the-art QoS scheduler by effectively reducing HOL
delay for HD Map vehicular application.

I. INTRODUCTION

VEHICULAR applications, including High-Definition map
(HD Map), Augmented Reality (AR), Virtual Reality

(VR), and services enabled by the Vehicle-to-Everything (V2X)
network, play a pivotal role in reshaping traffic dynamics in
5G and beyond networks. This transformation involves a shift
away from predominantly downlink (DL) traffic towards a more
balanced distribution of DL / uplink (UL) traffic, with a Radio
Access Network (RAN) delay below 1 msec [1]. Moreover,
the advent of Mobile Edge Computing (MEC) technology
has brought in computational capabilities closer to the Base
Station (gNodeB), effectively bridging the gap between the
limited computational resources of vehicle and the compute-
intensive demands of vehicular applications. Offloading com-
putationally intensive workloads (a.k.a. jobs) from vehicle to
MEC server can enhance a vehicle’s computational capabilities
thereby reducing execution latency. However, the successful
implementation of computational offloading to an MEC server

critically hinges on the End-to-End (E2E) delay between MEC
server and the vehicle.

In an effort to minimize the E2E delay, 3GPP has introduced
an array of technologies within 5G New Radio (NR), in-
cluding flexible numerology, Massive MIMO, Bandwidth Parts
(BWPs), service multiplexing, and mini-slotting. Recent field
tests of 5G NR in [2] indicate that the existing 5G infrastructure
can adequately meet the fundamental requirements of vehicular
applications. However, this study also underscores the need for
further improvements to reduce E2E delay for wider adoption
of vehicle applications and services. To address this need,
3GPP emphasizes the vital integration of vehicular application
awareness within the MAC scheduler [3], which should encom-
pass additional information about vehicular traffic, including
application identifiers, Packet Data Units (PDUs) sets, and
vehicle ranks, aimed at reducing E2E delay. In this context,
a cross-layer mechanism was proposed for Extended Reality
(XR) in [4].

The 5G NR RAN scheduler present at the gNodeB relies
on Buffer Status Reports (BSRs) sent by the UEs for uplink
scheduling. These BSRs convey details on the current RLC
queue sizes at vehicles (UEs)1 to the gNodeB so that RAN
scheduler could allocate uplink radio resources among different
contending UEs. Consequently, current BSR overlooks incom-
ing data at UE, potentially resulting in increased Head-Of-Line
(HOL) delay of packets in the uplink. Here, HOL refers to
the phenomenon where specific packets encounter congestion
or delay at the vehicle’s Radio Link Control (RLC) queue,
causing subsequent packets to be held back. To address this,
the proposed solution involves predicting RLC queue size at
the UE by leveraging historical BSR values at the gNodeB,
which allows for allocating additional radio resources beyond
what the current BSR indicate, and as shown in [5] it can
reduce the overall HOL delay of applications deployed at the
vehicles. However, to the best of the authors’ knowledge, the
influence of the combined effect of cross-layer optimization and
BSR prediction on the E2E delay in vehicular environments
has not been thoroughly investigated. Therefore, it is necessary

1Throughout this paper we use the terms vehicles and UEs interchangeably.



to examine cross-layer optimization and BSR prediction in
vehicular networks to enhance the overall performance of
vehicular applications.

In a vehicular environment, predicting BSR and employing a
cross-layer-based scheduler approach pose challenges due to the
high-speed nature of vehicles, resulting in rapid channel vari-
ations and frequent fluctuations in Signal-to-Interference-plus-
Noise Ratio (SINR) values. In dynamic environments, accurate
radio resource allocation for vehicles relies on crucial roles
played by BSR predictions and cross-layer information, both
of which are essential in minimizing E2E delay and enhancing
Packet Delivery Ratio (PDR). Additionally, a careful adjustment
of vehicle ranks based on cross-layer information, provided by
vehicular application at appropriate intervals, becomes essential
for better utilization of radio resources. The main contributions
of this work are:

• We propose an inclusive cross-layer framework intended
to facilitate seamless information exchange between the
RAN scheduler and the MEC scheduler. This framework
is designed to promote a cooperative system by enabling
efficient communication and data sharing between the
gNodeB and the MEC server used for offloading of jobs.

• We propose the utilization of a Bi-directional Long Short-
Term Memory (Bi-LSTM) Machine Learning (ML) model
to predict the RLC queue size of vehicles based on
historical BSR messages received from the respective
vehicles. The Bi-LSTM model is trained using the Berlin
V2X dataset [6]. Integrating this model into the UL
RAN scheduler decreases signaling overhead, specifically
minimizing the transmission of BSR messages.

II. BACKGROUND

This section provides the necessary background on 5G NR
scheduling timings, grant-based UL scheduling, Radio resource
scheduling and MEC scheduling algorithms.

A. Scheduling Timings and Processing Delays in 5G NR

• K2 timer: It serves to schedule the transmission of the
Physical Uplink Shared Channel (PUSCH) after receiving
an UL grant through the Physical Downlink Control Chan-
nel (PDCCH). It begins its countdown when a UE receives
an UL grant on the PDCCH and initiates a transmission on
the PUSCH. In simpler terms, K2 represents the number
of time slots allocated by the gNodeB to a UE for the tasks
of decoding the UL grant and transmitting UL data on the
PUSCH during the specified scheduling opportunity.

• L2L1 processing: The duration referred to as the encoding
delay corresponds to the time it takes for the gNodeB
PHY/MAC layers to encode control and/or data channels.
More precisely, it signifies the delay from the time the
MAC layer obtains control/data from the RLC layer to
the time that control/data are ready for transmission over
the air [7].

• Decode latency: It represents the delay involved in acquir-
ing data from the air by the PHY layer and making the

data block available for processing at the MAC layer. In
the context of UL, it occurs at the gNodeB.

• Tin: If gNodeB identifies a UE that remains inactive
without transmitting or receiving packets for the duration
of the inactivity timer (Tin), it terminates the connection.

B. Grant-based UL Procedure: Dynamic Scheduling

In 5G NR, UL transmission for UEs connected to the
gNodeB via the Uu interface follows a grant-based approach,
illustrated in Fig. 1, referred to as Mode-1 resource allocation.
In this resource allocation mode, an UE requests UL radio
resources from gNodeB when it has data in its RLC buffer
and requires a Scheduling Grant (SG) to transmit the pending
data. To initiate this process, the UE sends a Scheduling
Request (SR) request to the gNodeB, typically when it needs
the SG. The SR request is essentially a signal sent to gNodeB
through PUCCH to establish communication. In response,
gNodeB issues a minimal UL grant to the UE via PDCCH,
where PDCCH carries a DCI (Downlink Control Information).
This DCI includes essential details such as Modulation and
Coding Scheme (MCS), Resource Block (RB) allocation, and
HARQ configuration, which the UE uses for its initial UL data
transmission. Simultaneously with its first UL transmission,
the UE transmits a BSR. This BSR contains a quantized
value representing the number of bytes pending in its Logical
Channel Groups (LCGs). Subsequently, the gNodeB responds
with SG messages to allocate an appropriate amount of UL
radio resources, in terms of RBs, to the UE. The overall E2E
delay in this process depends on factors such as the packet size,
Transport Block Size (TBS) of the first UL scheduling assign-
ment, which can result in either a 3-step process (SR → UL
grant → UL data) or a 5-step process (SR → UL grant → UL
data + BSR→ UL grant→ UL data). Furthermore, processing
delays, including L2L1 processing and decode latency, along
with the K2 timer, also contribute to latency.

Figure 1: An instance of grant-based UL procedure under
numerology 0 showing transmission of a two packets (1500
bytes with 32-byte header).

C. MEC scheduling algorithms and Radio resource scheduling

• OCTANE [8]: OCTANE is an online heuristic based MEC
scheduling algorithm that takes into account job deadlines,
job input sizes, computational resources of the MEC
platform, and communication delays of vehicles when
making job offloading decisions.



• Proportional Fair (PF): The PF scheduling is a radio
resource allocation strategy which is employed to strike
a balance between optimizing overall system throughput
and ensuring fairness among UEs. This balance is achieved
by taking into account both the present channel conditions
and the prior resource allocations to the UEs. The set of
V UEs is represented by V = {1,. . . ,v,. . . ,V }, with each
UE indexed by v ∈ V . The PF metric for UE v within a
Transmission Time Interval (TTI) is represented as PFv(t)
and is defined in Eqn. 1.

PFv(t) =

[
Tα′

v

Rβ′
v

]
(1)

In this Eqn., Rβ′

v represents the historical average through-
put of UE v, while Tα′

v signifies its instantaneous data
rate. Parameters 0 ≤ α′ ≤ 1 and 0 ≤ β′ ≤ 1 can be
adjusted to strike a balance between optimizing throughput
and ensuring fairness within the PF metric.

• RETALIN [9]: It uses a modified PF metric that takes the
probability of SR and backlogs of UEs into account to
decide the number of RBs to be assigned to different UEs
for their UL transmissions in 5G NR. RETALIN, designed
as a queue-aware radio resource scheduler, assesses the
probability of SR for each UE by scrutinizing dynamic
queue behavior. RETALIN’s aim is to effectively manage
backlogs, reducing the incidence of SR and mitigating
the negative impact of numerology on UL traffic, thus
reducing the E2E delay. The RETALIN considers the
normalized backlog ratio (αv), which is defined in Eqn. 2.

αv =

[
ηv∑|V|
v=1 ηv

]
(2)

Where αv represents a drift in the UL buffer length of UE
v that is (ηv) as compared to the aggregated UL buffer
length of all UEs in a TTI.
Further, RETALIN also considers the probability of not
generating an SR by a UE in a TTI, given by:

Pv,NSR(t) = [1− PSR] (3)

where PSR is the probability of generating an SR in a
TTI derived in [9]. RETALIN uses the utility metric Uv(t)
defined in Eqn. 4, which has three different components
as shown below.

Uv(t) = αv × Pv,NSR(t)× PFv,r(t) (4)

Uv(t) is calculated for each vehicle v in every TTI. The
vehicle with the highest value will be allocated radio
resources first, followed by others in descending order.

III. SYSTEM MODEL

We examine a typical scenario in a highway environment
where V vehicles are within the coverage of a gNodeB, as
illustrated in Fig. 2. All V vehicles are equipped with On-
Board Units (OBUs) based on 5G NR, each with limited local
computational capabilities. As depicted in Fig. 2, a MEC system

enables vehicles connected to the gNodeB to augment their
computational capabilities through job offloading. In this setup,
we assume that the vehicles establish a connection with the
MEC system over Uu interface of 5G NR. Vehicles run a V2X
client application which generates jobs with specific timing
constraints. These jobs consist of data packets with varying
periodicity (i.e., Inter-Packet Arrival Time (IPAT)) with fixed
data sizes. If the local computing capacity is inadequate or
jobs are at risk of missing their deadlines, they are consid-
ered for offloading to the MEC system, incurring additional
transmission delay. On the other hand, the MEC system runs a
V2X server application which strives to maximize the number
of successfully offloaded jobs, making real-time offloading
decisions based on requests from the vehicles. However, it is
important to note that the MEC system has its limitations in
terms of computational resources. Hence, the MEC system must
consider both the computational and channel conditions of a
vehicle while making an offloading decision. For vehicles with
poor channel conditions, more computational resources should
be allocated to their jobs at the MEC system to ensure that
the jobs meet their timing constraints as there is an extra RAN
delay in offloading the jobs to the MEC system.

Figure 2: System model.

Figure 3: Cross-layer framework and BSR prediction.



IV. CROSS-LAYER FRAMEWORK AND BSR PREDICTION IN
VEHICULAR SCENARIO

In this work, we propose a cross-layer framework that
facilitates information exchange between the MEC scheduler
and the RAN scheduler for efficient allocation of radio and
computation resources in vehicular environments, as shown in
Fig. 3. The proposed cross-layer framework aims to minimize
the HOL delay for job offloading by fostering collaboration
between the two schedulers through message exchanges at
predefined intervals. The RAN scheduler provides essential
parameters (i.e., MCS and transmission rates) of the UE to
the MEC scheduler, enabling informed decisions about job
selection by the MEC scheduler. Simultaneously, the MEC
scheduler offers ranking information for vehicle selection,
enhancing radio resource allocation by the RAN scheduler. The
process involves the MEC scheduler selecting jobs from the
pool of offloading requests based on job size, deadline, and data
rate of the UE—calculated using Modulation and MCS values
provided by the RAN scheduler through the RAN Trigger
Message (RTM). Subsequently, responses are sent to selected
vehicles to initiate job offloading. Following this, the vehicles
transmit the required data to execute these offloaded jobs at
the MEC system. The MEC scheduler then notifies the RAN
scheduler through the MEC Trigger Message (MTM), which
includes the ranking and Radio Network Temporary Identifier
(RNTI) values of the selected vehicles for offloading. Upon
receiving the MTM, the RAN scheduler prioritizes vehicles
for data offloading. Both schedulers trigger each other by
exchanging MTM and RTM messages, detailed in Fig. 3.
The core of this cross-layer design lies in the cooperative
nature of the schedulers. Their collaboration extends beyond
mere message-based notifications and encompasses strategies
for adjusting rankings, where changes by one scheduler can
impact the other’s performance. By strategically designing
these adjustment mechanisms, the cross-layer approach aims
to balance radio and edge cloud resources, ultimately reducing
job queuing delay.

In general, RAN scheduler relies on current BSR values
indicated by the UE for assigning uplink radio resources. The
current BSR does not encompass information on the arrival
of new data after BSR transmission. As a result, the RAN
scheduler allocates resources without considering newly arrived
data, leading to increased HOL delay, signaling overhead,
and thereby increasing overall E2E delay. To reduce HOL
delay, we leverage ML techniques, specifically a Bi-LSTM
model trained on real-world measurements [6] to anticipate UL
traffic. The deployed model learns from traffic patterns and
evolving channel conditions. Subsequently, the RAN scheduler
proactively allocates more resources than indicated by the BSRs
in the UL grant, preempting the need for SR and ensuring
timely grants before the data arrives. These grants adapt to
changing channel conditions using MCS and allocate sufficient
radio resource blocks while upholding QoS requirements. This
proactive approach ensures that when a UE is ready to transmit
a lot of pending data, it already possesses a grant, significantly

reducing HOL delay and associated E2E delay.
Prediction of BSR can occur in three ways: conservative

(under prediction), precise (right prediction), or aggressive
(over prediction), as shown in Fig. 4. The gNodeB performs
the BSR prediction for the subsequent cycle using the ML
model chosen. The predicted B̂ value represents an additional
grant provided to the vehicle, which could either be less than,
exactly equal to, or more than the current UE buffer level. Over
allocation of radio resources leads to wastage if the prediction
exceeds the actual UE buffer capacity, while excessive grants
may result in the RLC buffer being emptied unnecessarily.
Conversely, reducing the grant to match or be less than the UE
buffer level can significantly increase the HOL delay. Accurate
BSR predictions pose a challenge, but the ML model aims
to forecast values equal to or less than the UE buffer level,
ensuring high spectral efficiency while reducing HOL delay.
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Figure 4: Grant-based UL procedure with BSR prediction in
case of numerology 1 for packets of size 1500 bytes (with 32
bytes of header) with IPAT = 5 slots and Tin = 5 slots.

V. CROSS-LAYER SCHEDULING ALGORITHMS

When a vehicle initiates an application, the vehicle sends
a job request to the MEC server. The MEC scheduler then
evaluates whether to execute the requested job on the MEC
server or not, as outlined in Algorithm 1. The MEC scheduling
algorithm starts by receiving job requests from all vehicles,
along with their respective MCS values (i.e., use to calculate
data rate of vehicles). Initially, the algorithm initializes an
empty ranking set RV for each vehicle v within the set
of vehicles V , denoted as RV = ∅. Upon receiving the
RTM message, the MCS values MCSV are extracted using
extractMCSofVehicles()(line 2). Subsequently, by call-
ing the calculateRanking() procedure, which utilizes
the OCTANE algorithm [8], the scheduler selects jobs for
execution (line 3). The algorithm iterates through all vehicles
and their respective selected jobs to compute the total size of
jobs (i.e., JobSizeTotal) to be offloaded from the vehicles
to the MEC server, as well as the total size of jobs for each



vehicle (i.e., JobSizeV ) (lines 11 - 16). Using JobSizeTotal
and JobSizeV , the algorithm calculates a ranking RV for each
vehicle and communicates this ranking information to the RAN
scheduler using the message MTM (lines 18-22). Here, ranking
is calculated based on the amount of data to be offloaded to
the MEC server. Higher rankings are assigned to vehicles that
need to offload less data to the MEC server. Following this, the
algorithm waits for new job requests to be received.

We modified the utility metric Uv(t), as defined in Eqn. 4 of
RETALIN, which is the PF variant. This modification involves
incorporating the ranks of UEs, denoted as Rv , utilized for UL
scheduling, sent by the MEC scheduler using MTM message.
The modified utility metric, U ′

v(t), comprises four distinct
components, as detailed below.

Uv(t) =

[
αv × Pv,NSR(t)× PFv(t)

Rv

]
(5)

Algorithm 1 Scheduler running at MEC Server
inputs : VallJobs = {J1, J2, . . . , JV } ,

Jv = {j1, j2, . . . , jn} , (v ∈ V)
VSelectedJobs = {}, RV = {}

1 if receive the message RTM then
2 MCSV ← extractMCSofVehicles(RTM)
3 calculateRanking(VallJobs,MCSV )
4 else
5 if new job request is received then
6 calculateRanking(VallJobs,MCSV )
7 else
8 GOTO line 1
9 end

10 end
procedure calculateRanking(VallJobs,MCSV )
// OCTANE selects the jobs to be offloaded

11 VSelectedJobs ← OCTANE(VallJobs,MCSV )
12 JobSizeTotal← 0, JobSizeV = {}
13 forall i ∈ VSelectedJobs do
14 JobSizev ← sumOfJobs(i)
15 JobSizeTotal← JobSizeTotal + JobSizev
16 JobSizeV ← JobSizeV ∪ JobSizev
17 end
18 forall v ∈ V do
19 Rv ←

[
JobSizeTotal−JobSizev

JobSizeTotal

]
20 RV ← RV ∪Rv

21 end
22 Send MTM message with RV to the RAN scheduler

end procedure
The RAN scheduling algorithm employs historical BSR data

from vehicles as input for a Bi-LSTM model to predict the
future queue size of the UE. The algorithm also uses the
ranking information provided by the MEC scheduler to allocate
radio resources, as described in the Algorithm 2. The algorithm
initializes with empty sets for predicted queue size and rankings
for each UE v within the set V , denoted as QueueSizepredv = ∅
and Rv = ∅, respectively. Upon receiving the MTM message,
the algorithm extracts the ranking of each UE v into Rv using

extractRanksOfVehicles() (line 2). If there are no
updates in the information, the algorithm retains the previ-
ous rankings of UEs. The algorithm calls callRETALIN()
procedure to predict the BSR and to allocate radio resources
using RETALIN() scheduler (line 3). Afterward, the algorithm
sends an RTM message containing MCS values of vehicles
to the MEC scheduler (line 4). callRETALIN() procedure
iterates through all UEs in VallBSR, where each UE vi =
{bsr1, bsr2, . . . , bsrBi−LSTMw} contains previous BSR values
(Bi− LSTMw represents the window size). For every UE v
in VallBSR, the algorithm predicts the queue size using the Bi-
LSTM model (Bi-LSTMpredict()) and stores these pre-
dictions in QueueSizepredv (lines 7 - 9). Finally, the algorithm
calculates the number of RBs for radio resource allocation
(RETALIN()) [9] for the vehicle v, using the predicted BSR
values in BSRv and the rankings of vehicles RV (line 10).

Algorithm 2 Scheduler running at gNodeB
inputs : VallBSR = {BSR1, BSR2, . . . , BSRv, . . . , BSRV } ,

BSRv = {bsr1, bsr2, . . . , bsrBi−LSTMw
} , (v ∈ V)

RV = {}, QueueSizepredv = {}, (v ∈ V)
1 if receive the message MTM then
2 RV ← extractRanksOfVehicles(MTM)
3 MCSV ← callRETALIN(VallBSR)
4 Send RTM message with MCSV to the MEC scheduler
5 else
6 callRETALIN(VallBSR)

procedure callRETALIN(VallBSR)
// Predict BSR values using Bi-LSTM model

7 forall v ∈ VallBSR do
8 B̂ ← Bi-LSTMpredict(BSRv)
9 QueueSizepredv ← (bsrBi−LSTMw

+ B̂)

10 MCSV ← RETALIN(Rv , QueueSizepredv )
11 Return MCSV

end procedure

VI. SIMULATION AND PERFORMANCE EVALUATION

We created a simulated scenario, where each vehicle gen-
erates various tasks related to HD Map, such as sensor data
collection, sensor data analysis, and HD Map updates. Sen-
sor data analysis, being computationally intensive, requires
offloading to the MEC server through the 5G NR network.
To facilitate this, we developed a job offloading application
called UdpOffloading, built upon NS-3’s Udp-Client-Server
application. The client application can be configured to generate
jobs with different characteristics, including input sizes, dead-
lines, and CPU cycle requirements, at specified intervals. The
deadlines of the jobs are configured according OCTANE [8],
while other parameters are set according to RETALIN [9], as
detailed in Table I. Configurable parameters of the Bi-LSTM
model include feature dimensions, timestamps, lead-time, and
the learning rate (η). We chose the default value of 0.01 for
the learning rate η, as specified in the Keras library [10].
After extensive experimentation, we determined that the ideal
number of training epochs for the Bi-LSTM model is 100. We



considered the Berlin V2X dataset [6] and split the dataset
into two parts for training and testing, allocating one-fourth of
the data for testing purposes. The Bi-LSTM model has been
integrated as a gym with the NS3-gym interface. Subsequently,
we developed a MAC scheduler interface based on OpenAI
gym. The evaluation is carried out within a highway scenario,
specifically utilizing road segments sourced from Winnipeg,
Canada, that encompass a 250-meter stretch of the Pembina
Canada Highway. To simulate customized vehicular traffic,
we employed the RACE [11]. RACE utilizes SUMO and
OpenstreetMap to replicate realistic vehicle traffic patterns. For
real data on cellular infrastructure, we utilized datasets provided
by the Canadian Organization for Innovation, Science, and
Economic Development (ISED) throughout our evaluation, each
simulation is repeated with 10 different random seeds, and the
results are presented with 95% confidence intervals.

Table I: Simulation Parameters

Parameter Value
Scenario Urban Macro Cell
Number of Vehicles |V| 30
Mobility Model Krauss
Average Vehicle Velocity (Vvel) 60 kmph
5G NR Base Station/Vehicle TX power 46/23 dBm
5G NR Base Station Antenna Pattern Canadian dataset
5G NR Base Station Antenna Tilt 15◦

5G NR Base Station/Vehicle
Antenna Height 25 m / 1.5 m

Carrier Frequency 6 GHz
Channel Model 3GPP, Line-Of-Sight
Channel Bandwidth 30 MHz
5G NR Numerology µ 0, 1, 2
Channel model UMa LoS
MEC Task scheduler OCTANE [8]

5G NR MAC Scheduler RETALIN [9], PF
QoS-aware [12]

5G QoS Identifier (5QI) 75, GBR V2X
Bi− LSTMw 50
Packet size (L) 1000 Bytes
Job generation per vehicle 0.1 sec

A. Comparison Schemes and Performance Metrics

1) Comparison Schemes: In order to test the performance
of our proposed algorithm, we compare it with the following
state-of-the-art and baseline radio resource scheduling schemes
and MEC scheduling algorithms.

• OCTANE [8] + PF: At the MEC server, OCTANE operates
as an MEC scheduling algorithm. Meanwhile, the RAN
scheduler employs the PF scheduling strategy.

• OCTANE [8]+ QoS-aware scheduler [12]: At the MEC
server, OCTANE operates, while a state-of-the-art QoS-
aware scheduler functions as the RAN scheduler, as out-
lined in [12]. QoS-aware scheduler introduces a delay
budget factor (D) that represents the weight sensitive to
delay, considering HOL delay and Packet Delay Budget
(PDB). The calculation for this factor is given as D = PDB
/ (PDB - HOL). Further, the QoS-aware scheduler utilizes
multiple factors including the default priority level of the
flow, the PF metric and D to allocate the radio resources.

• OCTANE+ RETALIN (cross-layer): At the MEC server,
OCTANE is operational, while modified RETALIN [9]

functions as a RAN scheduler. OCTANE and RETALIN
engage in cross-layer communication using MTM and
RTM messages, with RETALIN utilizing predicted RLC
queue value to reduce HOL delay.

The following performance metrics are used to evaluate the
performance of the proposed scheme.

• Offloading Success Rate (OSR): A job is considered suc-
cessful if the job is offloaded to the MEC server and com-
pleted within its designated deadline. OSR is calculated as
the ratio between the number of jobs successfully executed
by the MEC server and the total number of job offload
requests received by the MEC server.

• HOL delay: It represents the delay experienced by a packet
at the head of a queue waiting to be transmitted. HOL
delay is a measure of the time a packet spends in a UE
queue before it is transmitted.

• (%) of SR (SRp): It represents the ratio of SRs, such
as the control or signaling overhead, to the total number
of packets exchanged within the network, expressed as a
percentage.

• BSRavg: It is the average number of BSR messages used
to transmit a packet in the network.

B. Performance Results

In Fig. 5(a), the OSR variation is depicted for OCTANE+PF,
OCTANE+QoS-aware and OCTANE+RETALIN (cross-layer)
across numerologies, setting Vspeed = 60 kmph and L = 1000
bytes. With an increase in numerology from µ = 0 to µ = 2, a
consistent decrease in OSR is observed. Here, OCTANE+PF,
OCTANE+QoS-aware and OCTANE+RETALIN (cross-layer)
have OSR of 83%, 64%, 2% and 84%, 78%, 31% and 84%,
84%, 70% in case of µ = 0, µ = 1, µ = 2, respectively.
The declining OSR with higher numerologies indicates an
increasing number of jobs failing to meet the deadline of
the HD Map application. OCTANE+RETALIN (cross-layer)
notably enhances the OSR by 19% over the state-of-the-art
QoS-aware scheduler for HD Map applications. Additionally,
OCTANE+RETALIN (cross-layer) experiences less HOL de-
lay compared to OCTANE+PF and OCTANE+QoS-aware as
shown in Fig. 5(b), due to cross-layer information exchange
facilitated by RTM and MTM messages, which improves OSR.
The results shown in Fig. 6(a) and Fig. 6(b) clearly indicate
that OCTANE+RETALIN (cross-layer) is capable of achieving
a better trade-off between SR and BSR for higher numerologies
for the application of the HD Map. However, the OSR is low for
µ = 2 compared to µ = 1 for all schemes due to the increase
in packet fragmentation in µ = 2, attributed to the reduced slot
time.

VII. CONCLUSIONS

This work presented a novel cross-layer framework that
facilitated information exchange between RAN and MEC
schedulers, leveraging ranking and channel condition data for
efficient task offloading in case of V2X applications. The
utilization of a Bi-directional LSTM, trained on the Berlin V2X
dataset, enhanced the model’s capability to learn traffic inter-
arrival patterns and predict future UL grants, assisting the RAN
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Figure 5: Result observed for HD Map application by varying
numerology for V = 30 with Vspeed = 60 kmph where L =
1000 bytes and Bi− LSTMw = 50.

scheduler. The integration of this cross-layer framework and
RLC queue prediction proved particularly impactful in HD Map
applications. In the context of the cross-layer framework, where
RETALIN (our previous RAN scheduler work) and OCTANE
(our previous solution for task offloading to an MEC server)
work together, it indicates an increased offloading success rate
of 19% and a reduction of 25% in HOL delay compared to
state-of-the-art QoS-aware scheduler.
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