
WIP: Impact of AI/ML Model Adaptation on RAN
Control Loop Response Time
V. R. Chintapalli#, V. Gudepu$, K. Kondepu$, A. Sgambelluri•,

A. Franklin#, B. R. Tamma#, P. Castoldi•, L. Valcarenghi•
#Indian Institute of Technology Hyderabad, India
$Indian Institute of Technology Dharwad, India

•Scuola Superiore Sant’Anna, Pisa, Italy
e-mail: cs17resch01007@iith.ac.in, 212011003@iitdh.ac.in

Abstract—The advent of Open Radio Access Network (O-
RAN) technology enables intelligent edge solutions for base
stations in beyond 5G (B5G) networks. O-RAN Working Group 2
(WG2) focuses on the architecture and specifications of AI/ML
workflows, allowing AI/ML applications in O-RAN environments
to meet different QoS requirements for different use cases over
varying time periods. This study shows the technical challenges
in mapping AI/ML functionalities at Near-Real Time (RT) RAN
Intelligence Controller (RIC) and/or Non-RT RIC for closed loop
control-based resource adaptation in O-RAN. We also present
a drift-based solution to avoid performance violations if there
is decay in prediction accuracy. Results show that drift-based
solution outperforms offline models.

Index Terms—O-RAN, Beyond 5G services, RIC control loops,
AI/ML, Drift-assistance.

I. INTRODUCTION

Several consortia, such as Operator Defined Open and
Intelligent Radio Access Networks (O-RAN), Telecom Infra
Project (TIP), Open RAN Policy Coalition, to name a few, are
promoting disaggregated architectures for the Radio Access
Network (RAN) for 5G and beyond [1]. These architectures
are expected to bring many benefits such as enabling more
market competition and customer choice, lower equipment
costs, and improved network performance. They are based
on two fundamental principles: openness and intelligence.
Openness allows multivendor interoperability in RAN tech-
nologies, specifically by creating open interfaces between O-
RAN components: central unit (O-CU), distributed unit (O-
DU), and radio unit (O-RU). Intelligence is becoming a key
component in next-generation networks deployment to ease
the complex network configuration for meeting the dynamic
service demands.

In O-RAN, two RAN intelligent controllers (RIC) are de-
fined: the Near-Real Time (Near-RT) and the Non-RT RIC [2].
RICs enable RAN autonomous optimization by introducing
three closed control loops operating at different timescales
depending on the position of Machine Learning (ML) model
inference: (i) control loop at O-DU (< 10ms — loop 1); (ii)
control loop at Near-RT RIC (≥ 10ms and < 1s — loop 2);
(iii) control loop at Non-RT RIC (≥ 1s — loop 3) [2]. In RICs,
prediction models, exploiting AI/ML inference, are used to
predict future traffic behaviour for triggering an autonomous
network reconfiguration, if needed. Thus, the performance of

the prediction models plays a major role in the control loop,
particularly when the prediction models exhibit drift or decay
in the performance, requiring switching to an improved model
or retraining the models. Moreover, the considered prediction
model and the resources allocated to run it may have an impact
on the control loop. To the best of our knowledge, no prior
work investigated impact of AI/ML model adaptation on RAN
control loop response time.

This paper focuses on a method for determining whether
to retrain or switch to a different trained model based on
the nature of the drift. In general, the drift is classified into
different categories such as: (i) sudden; (ii) gradual; (iii)
incremental; and (iv) reoccurring drift [3], [4]. A sudden
drift happens whenever there is an abrupt change in the data
distribution within a short period of time. A gradual drift is
an extension of sudden drift where we can observe another
data distribution over a long period of time and performance
decay occurs gradually. An incremental drift occurs whenever
model performance decays and grows as the time progresses.
A reoccurring drift happens when the performance decay
pattern repeats itself (i.e., repeated behaviour) over time.

This paper presents a drift-based solution to avoid perfor-
mance violations of the application whenever there is a decay
in the prediction accuracy of AI/ML inference. In addition,
it experimentally evaluates the impact of the AI/ML model
adaptation and of the resources available for AI/ML based
inference and on the control loop response time.

II. SYSTEM MODEL AND PROPOSED SOLUTION

Fig. 1 shows the considered O-RAN architecture. O-RAN
provides different interfaces (O1, A1 and E2) for the functional
block communication. The O1-interface obtains the input
data from all the components (O-RU, O-DU, and O-CU),
and model deployment/termination information from Non-
RT to Near-RT RIC. The A1-interface publishes policy-based
guidance, AI/ML performance feedback, verification and mon-
itoring information between Non-RT RIC and Near-RT RIC.
The E2-interface is used between near-RT RIC, O-CU, and O-
DU. For what concerns the fronthaul-based transport network,
multiple Transport Units (TUs) can connect to Transport Node
(TN), and TN can allocate the bandwidth to TUs. As shown
in Fig. 1, different ML assisted control loops are envisioned

Figure 1. O-RAN architecture realised by fronthaul transport networks.

depending on what is being controlled (i.e., radio resources
and policy scheduling, handover, and models). The AI/ML
model management block is primarily responsible to determine
when to retrain or switch the model for improved performance
based on feedback from the AI/ML continuous operation
block. In addition, AI/ML model management directs the
AI/ML training block when the model needs to be retrained.
Non-RT RIC runs at the cloud, whereas Near-RT RIC runs
at an edge in the considered scenario. Despite the advantages
of the edge over the cloud, compute and storage resources on
edge servers are constrained and less powerful when compared
to cloud servers. The resources allocated to AI/ML inference
at the edge may have an impact on prediction time (e.g., the
lower the resources are available, the longer the prediction
time).

The traditional AI models performance always depends on
adopted training or observed datasets. Whenever the model re-
ceives unseen data than the observed one, then resulting in the
performance decay [3], [4]. Thus, to maintain the performance
guarantee, it is required to either switch to alternative trained
models or retrain the existing models. Fig. 2 shows the pro-
posed drift-based solution: (i) AI/ML inference module refers
to an instance of prediction model; (ii) Upon decay in the
prediction accuracy, determine the type of drift based on the
behavior of the prediction values; a window based approach

is used to detect the kind of drift by employing a continuous
observation of error-rate for each window and helps to trace
the drift pattern. (iii) A model retraining is required when
the prediction values are sudden or gradual compared to the
actual values; (iv) select suitable (pre)trained model when the
prediction values are incremental or reoccurring; and (v) the
selected or retrained model is replaced at AI/ML inference,
and the procedure repeats. During this process, the control
loops are influenced by different delays in AI/ML lifecycle
management.

Moreover, the prediction time also depends on the weight
of the model (i.e., classical models may take prediction time
in terms of microseconds and ML methods take more time).
Thus, the trade-off between resource usage at the edge and
prediction time of the model could be maintained. Continuous
observation of the incoming data is required to avoid the
performance decay in the model prediction. This could be
handled by performing periodic retraining (due to unseen
data) [5], however, this may not be appropriate when the user
demands changes dynamically [6].

The total time required for AL/ML retraining (Totalrt) is
computed as:

Totalrt = Tp + Tico + Tco + Tmm + Trt + Tmmi (1)

where Tp is AI/ML inference time (i.e., prediction time),

Figure 2. Drift process to retrain the model or switched to best suitable trained model.

Tico is the delay between AI/ML inference and continuous
operation modules, Tco is the time spent at the AI/ML con-
tinuous operation (Tco) module for providing the feedback
to the AI/ML model management module, Tmm is the time
spent on AI/ML model management module to determine
whether or not retraining is required, Trt is the time spent
on retraining the model at AI/ML training module, and Tmmi

is the time taken for transferring the retrained model from
AI/ML model management to AI/ML inference location. Note
that the delays between modules at Non-RT RIC are ignored.
All of the aforementioned delays are taken into account, even
if switching to an improved model, with the exception of Trt.
Prediction time (Tp) plays a key role in meeting control loop
even if no change is required to the model. Thus, the following
section shows how the resource allocated to run the AI/ML
inference affects Tp.

III. PERFORMANCE EVALUATION RESULTS

For evaluation purpose, both traditional time series analysis
prediction algorithms such as: double exponential smoothing
(DES), triple exponential smoothing (TES), and AI/ML based
prediction algorithms such as long short term memory (LSTM)
and Transformer (TS) are used to estimate the future traffic [7].
Mathematical description of distinct time series analysis and
ML-based techniques are well exploited in [7], [8]. Further-
more, the state-of-the-art AI/ML mechanism, transformer is
explained in [9]. The dynamic nature of user traffic dataset [10]
is considered, and reprocessed to obtain 1ms granularity. We
generate synthetic dataset for analyzing the impact of adopting
drift-based approach. The considered performance parameter
is the prediction accuracy, represented by the RMSE (eq. 2) and
the optimal hyper-parameters are selected for each technique.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2)

where, yi is real output and ŷi is the predicted output from
respective model.

Table I shows variation in prediction time for different
models running with various VM-flavors using OpenStack
cloud platform. Results show that the resource allocated to
the AI/ML inference module has a significant role in meeting
control loop requirements. However, time series models ex-
hibit negligible Tp compared to the ML models. Note that ML

Table I
PREDICTION TIME AND PREDICTION ACCURACY

VM-Flavor DES
[ns]

TES
[ns]

LSTM
[ms]

TS
[ms]

Small(1vCPU, 2GB RAM) 0.431 0.392 23.83 25.92
Medium(2vCPU, 4GB RAM) 0.392 0.231 14.31 17.41
Large(4vCPU, 8GB RAM) 0.201 0.101 5.12 7.53
XLarge(8vCPU, 16GB RAM) 0.082 0.085 1.3 1.1
Performance accuracy DES TES LSTM TS
RMSE 37 26 19 11

models require more resources to obtain better Tp. This implies
that, due to resource constraints, traditional time series models
can be used for O-DU AI/ML inference. However, trade-off
between different models and their performance need to be
taken into account. Table I also shows the prediction accuracy
observed for the considered models. However, the performance
of model is highly depends on the dataset provided and hyper-
parameters used [7].

Figure 3. Sudden drift controlled by using retraining the model.

Figs. 3 and 4 depicts the impact of different drifts in
performance. Two different prediction approaches are consid-
ered by using: (i) prediction without drift assistance (offline
model), where no retraining is performed; (ii) prediction with
drift assistance, where performance of the model is observed
continuously and the required action is taken depending on
the nature of the drift.

Fig. 3 depicts the effect of replacing the model with a
retrained model in the case of sudden drift. The top plot in
Fig. 3 depicts the actual and forecast the number of users of the
considered models, while the bottom plot depicts the RMSE

Figure 4. Incremental drift controlled by changing the model.

of the corresponding model. Initially, we chose the TES
model based on the performance of the various models. When
newly arriving data follows a different data distribution than
the trained model distribution, it results in sudden drift. Re-
training the model with newly arriving data increases model
performance in order to overcome this type of drift.

As shown in Fig. 3, TES performance degrades abruptly
over the intervals [32−40] ms and [65−75] ms. The type of
drift is detected based on the average RMSE of each time win-
dow (time window size is assumed to be 10 ms). The sudden
drift threshold is set to more than 10 in this case. However,
the threshold value may differ based on the service/application
under consideration. AI/ML model management re-trained the
TES model in the cloud and employed it to predict from
the 40 onwards and named as Re-trained TES. In addition,
we have also shown the performance of previous model in
Fig. 3 to show the impact of the retrained model over the
previously running TES model. The new pattern is observed
at time interval [70 − 75] ms, and it is effectively predicted
by the Re-trained TES model, whereas the earlier model (i.e.,
TES) failed to detect it.

Fig. 4 shows the impact of changing the model in case
of incremental drift. Initially, we have chosen LSTM . The
degradation of LSTM performance starts at the interval of
[24 − 34] ms and grows over time. This type of perfor-
mance degradation is referred as incremental drift. To deal
with this type of drift, AI/ML model management module
considers different other models in the cloud and found that
the transformer model performs better than LSTM and
replaces it instead (at 42 ms). Note that the incremental and
sudden drift are emulated by continuously feeding new data.

We considered that the retrained or alternative model is
readily available and delays involved in replacing the model is
negligible. However, in reality, it takes significant amount of
time which depends on the time taken for retraining the model
in cloud and the communication delays between the modules
for replacing the model. It can be overcome by periodically
retrain the model and it is replace the existing model with the
readily available retrained model as described in [5]. However,
this may not be appropriate when user demands change on
a regular basis, and it also depends on the periodic interval
in consideration. Predicting when to retrain the model is an

interesting open research problem to investigate and we would
like to investigate as part of our future work.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This paper studied technical challenges involved in AI/ML
model adaptation on control loop response time in O-RAN.
Initial study focused on evaluating the impact of prediction
time as a function of resources allocated for both traditional
time series and AI/ML based forecasting mechanisms. Results
showed that the drift-based model could outperform whenever
there is decay in performance. Based on this study, poten-
tial future directions of this work as follows: (i) Emulation
framework: we are currently building an emulation platform
to emulate drift based mechanism at RICs using open-source
tools such as O-RAN and FlexRIC; (ii) Predict when to
Retrain: retraining on the fly or periodic retraining approaches
will not be suitable for time critical 5G and beyond services.
To overcome this we would like to investigate to design a
mechanism for predicting when to retrain; (iii) Mathematical
analysis: analysing mathematically the impact of different
delays involved in drift-based solutions.

ACKNOWLEDGMENT

This work has been partially supported by the project
“Scheme for Promotion of Academic and Research Col-
laboration (SPARC)”, MHRD, Govt. of India and the EU
Commission through the 5GROWTH project (grant agreement
no. 856709).

REFERENCES

[1] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5g networks: State-of-the-art and the road
ahead,” Computer Networks 182, 107,516 (2020).

[2] O-RAN Working Group 2, “O-RAN AI/ML Workflow Description and
Requirements - v1.01, Technical Specification, 2021,” .

[3] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering 31, 2346–2363 (2018).

[4] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR)
46, 1–37 (2014).

[5] A. H. Al Muktadir and V. P. Kafle, “Prediction and dynamic adjustment
of resources for latency-sensitive virtual network functions,” in “2020
23rd Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN),” (IEEE, 2020), pp. 235–242.

[6] V. P. Kafle and A. H. Al Muktadir, “Intelligent and agile control of edge
resources for latency-sensitive iot services,” IEEE Access 8, 207,991–
208,002 (2020).

[7] V. Reddy Chintapalli, K. Kondepu, A. Sgambelluri, A. Franklin A,
B. Reddy Tamma, P. Castoldi, and L. Valcarenghi, “Orchestrating edge-
and cloud-based predictive analytics services,” in “Proc. of EuCNC,”
(2020), pp. 214–218.

[8] J. Martı́n-Pérez, K. Kondepu, D. De Vleeschauwer, V. Reddy,
C. Guimarães, A. Sgambelluri, L. Valcarenghi, C. Papagianni, and
C. J. Bernardos, “Dimensioning of v2x services in 5g networks through
forecast-based scaling,” IEEE Access (2022).

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in “Advances
in neural information processing systems,” (2017), pp. 5998–6008.

[10] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of milan and the province of trentino,”
Scientific data 2, 1–15 (2015).

