
JARS: A Joint Allocation of Radio and System
Resources for Virtualized Radio Access Networks

Keval A Malde, Venkatarami Reddy Chintapalli, Bhavishya Sharma, Bheemarjuna Reddy Tamma, Antony Franklin A
Indian Institute of Technology Hyderabad, India

Email: {cs20mtech01003, cs17resch01007, cs20mtech12006, tbr, antony.franklin}@iith.ac.in

Abstract—Mobile operators are widely adopting Network
Functions Virtualization (NFV) to get the benefits of virtualiza-
tion, including ease of deployment, flexibility, and cost savings.
NFV allows multiple virtualized Radio Access Networks (vRANs)
to run on commodity hardware enabling joint signal processing
and efficient interference management. In addition, mobile op-
erators can run general-purpose workloads alongside vRANs to
utilize spare system resources in the NFV infrastructure. In such
a consolidated scenario, it is necessary to ensure that the Key
Performance Indicators (KPIs) of vRAN workloads are always
met. But the workload consolidation could cause high variability
and unpredictability in the performance of the deployed vRANs
due to contentions for shared system resources like CPU cores,
Last Level Cache (LLC), etc. In order to address this problem, we
present JARS – a joint allocation of radio and system resources
for the NFV infrastructure – that dynamically adjusts system
resources such as CPU cores and LLC-ways, and radio resources
such as Physical Resource Blocks (PRBs) to ensure KPIs for
vRANs and improve overall resource utilization by workload
consolidation. We profile srsLTE to determine the minimal CPU
core and LLC resource requirements to satisfy KPIs during
different traffic loads, which is used in the JARS. Experimental
studies on a prototype system show that the proposed JARS
outperforms a state-of-the-art scheme by 23%.

I. INTRODUCTION

Network Functions Virtualization (NFV) and cloud comput-
ing have attracted tremendous interest from mobile operators.
They allow on-demand allocation of resources to Virtual
Network Functions (VNFs), achieving better flexibility, scala-
bility, and cost savings. VNFs are usually deployed in Virtual
Machines (VMs) or containers using commodity hardware as
shown in Fig. 1. A forthcoming trend is extending NFV to the
Radio Access Network (RAN) enabling virtual RAN (vRAN)
a.k.a. Cloud RAN (C-RAN) to deploy baseband functions of
4G/5G RANs on NFV Infrastructure (NFVI) [1].

For efficient utilization of NFVI, a standard approach
is RAN pooling which involves sharing underlying system
resources among several cells for achieving the so-called
statistical multiplexing gain [2]. The authors of [3] considered
spatio-temporal traffic fluctuations at cell sites for efficient
allocation of computing resources. It is observed that even
during peak hours, more than 50% of CPU cores are not being
fully utilized due to variations in the computing demands of
uplink and downlink signal processing [4]. The operators can
use these spare resources to run non-critical, general-purpose
workloads as shown in Fig. 1, which is known as workload
consolidation. General-purpose workloads can be Machine

Compute Storage Network
Hardware Resources

Virtual
Computing

Virtual
Storage

Virtual
Network

NFV Infrastructure (NFVI)

Workloads
VNF

Virualization Layer

VNF VNF NNNN

Fig. 1: An example of workload consolidation on NFVI:
VNFs (vRANs) with general-purpose workloads (NNs).

Learning (ML) workloads [5], cellular-specific workloads such
as local content caching and delivery workloads [6] that help
the operators reduce user latency and traffic on back-haul
networks, or even core network related workloads [7].

Workload consolidation involves the mapping of VNFs
(vRANs) and general-purpose workloads to the underlying
compute servers present in the NFVI by the virtualization
layer. The VNFs and other workloads that are deployed on
any given server end up contending for the shared system
resources (such as CPU, Last Level Cache (LLC), and mem-
ory bandwidth), which results in possible violation of Key
Performance Indicators (KPIs) (e.g., throughput, latency) of
vRANs deployed [8]. In [4], the authors proposed concordia,
a mechanism for dynamically allocating the required number
of CPU cores of the server to the vRAN and the remaining
cores to general-purpose workloads to achieve effective CPU
utilization. However, it overlooked the impact of LLC con-
tentions on the performance of vRAN when it is co-located
with other workloads on the same server.

Through experiments conducted over the srsLTE plat-
form [9], we study how the performance of vRAN is impacted
by varying amounts of system resources (such as CPU cores
and LLC) allocated for different ingress traffic loads. It is
observed that the combination of bare minimum CPU cores
and LLC resources that need to be allocated to achieve the
guaranteed KPIs is different for different ingress traffic loads
of the cell. So, instead of over-provisioning for its peak
resource demand, an efficient solution could be to dynamically
adjust the amount of system resources allocated to a vRAN
based on its current traffic demand. Towards this, in this paper,

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)
N

O
M

S
20

23
-2

02
3

IE
EE

/IF
IP

 N
et

w
or

k
O

pe
ra

tio
ns

 a
nd

 M
an

ag
em

en
t S

ym
po

si
um

 |
97

8-
1-

66
54

-7
71

6-
1/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
O

M
S5

69
28

.2
02

3.
10

15
44

07

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

we present JARS – a joint resource allocation strategy – that
dynamically allocates radio resources (i.e., PRBs) and system
resources (i.e., CPU cores and LLC-ways) to a vRAN when
it is co-located with other workloads on a compute server in
the NFVI. The key contributions of this paper are as follows.

• Experimental study showing how vRAN performs with
varying amounts of system resources like CPU cores and
LLC-ways, and radio resources like PRBs.

• A novel resource allocator JARS that helps vRAN to
maintain its KPIs even when it is co-located with other
workloads on the same server for improving overall
resource utilization of the NFVI.

• Experimental results on a prototype system show that the
proposed JARS improves the performance of vRAN by
23% as compared to state-of-the-art approaches.

II. RELATED WORK

Allocating compute resources in cellular networks has been
the subject of extensive research. The authors of [10] cre-
ated a model using a game-theory bargaining strategy that
dynamically assigns computing resources to RAN. The authors
of [11] employed traffic prediction to dynamically adjust
computing resources for improving energy efficiency. The
authors of [4] proposed Concordia, a user space deadline
scheduling framework for vRAN that constructs a prediction
model to forecast the worst-case execution time of vRAN
signal processing tasks and reserves a minimal number of
CPU cores for vRAN while freeing up the remaining cores for
other workloads. If no care is taken while choosing general-
purpose workloads for deployment along with vRAN, they
could end up consuming more shared resources (e.g., LLC-
ways) and cause performance degradation to the vRAN. Co-
located workloads that negatively impact the performance
of vRAN and other high-priority workloads deployed on a
compute server are called as noisy-neighbors (NN).

There has been a significant amount of research that looked
into the impact of NN in virtualized mobile environments.
The authors of [12] developed an analysis methodology to
evaluate how NNs affect the KPIs of 5G Core. To find NNs,
they employed a variety of ML models. To find the underlying
cause of NN using supervised learning, the authors of [13]
developed an anomalous detection model. All of these works
centered on detecting NNs in a general context and did not
offer a solution to the NN problem.

A few works looked into the NN problem from an LLC
point of view. For isolation and performance guarantees, the
authors of [14] employed Intel Cache Allocation Technology
(CAT) technology on the 5G core. The authors of [15], [16]
looked at how different Class of Services (CLOS) performed
in the presence of NN, including virtual firewalls and routers.
They looked at how a NN affects throughput and latency for
each COS and how to use CAT technology to overcome per-
formance degradation and achieve considerable performance
gains. The performance of a variety of VNFs in a NN envi-
ronment was thoroughly studied in [17]. The authors of [18]
created a framework which differentiates workloads into high

priority and best-effort and then using deep reinforcement
learning it allocates the required LLC-ways to the high priority
workload and the remaining to the best-effort workload.

To the best of our knowledge, none of the existing works
explored how LLC resource contentions due to the presence
of NNs affect the performance of vRAN. It is crucial to
develop new strategies for efficiently distributing CPU cores
and limited system resources like LLC-ways across the co-
located workloads while also taking into account their KPIs
and the expense of the servers used.

III. BACKGROUND AND MOTIVATION

This section provides background information on Intel’s
CAT tool, followed by motivational results demonstrating the
impact of radio and system resources on the performance of
vRAN using the srsLTE platform.

A. Cache Allocation Technology (CAT): An Overview

Intel’s CAT tool provides software control over the number
of LLC-ways that can be utilized by a CPU core. By means
of a specialized resource tag called Class of Service (CLOS),
CAT can assign partitions of the LLC to a particular core,
thereby limiting the amount of LLC a core can use. The
available cache ways/partitions can be dynamically assigned to
each CLOS using Capacity Bit Mask (CBM), which indicates
how much cache can be used by them. Bits within the
CBMs indicate relative amount of cache space allocated and
priority level of the CLOS. It is possible to create disjoint
or overlapping cache ways using CLOS. But, the number of
cache partitions is architecture-dependent.

Consider a commodity server with 20 CPU cores and 20
LLC-ways (each LLC-way is of 1 MB) for deploying vRAN
and NN workloads. Table I shows a sample allocation of LLC-
ways to these workloads in two different scenarios. In the first
scenario, the vRAN is configured with 16 LLC-ways (80% of
cache) over 18 cores, whereas the NN workload is configured
with the remaining four LLC-ways (20% cache) across two
cores. Using the same core assignment as the first scenario, the
second scenario distributes cache ways (50%) evenly between
the vRAN and the NN workloads.

TABLE I: CLOS using Capacity Bit Masks (CBMs)

Scenario Capacity Cache CPU
Bitmask in Hex Capacity Assignment

1 0x0ffff 16 MB 2-19 (vRAN)
0xf0000 4 MB 0,1 (NN)

2 0x003ff 10 MB 2-19 (vRAN)
0xffc00 10 MB 0,1 (NN)

B. Motivation

To clearly understand the effect of system resources and
radio resources provisioned on the performance of vRAN,
experiments are conducted by using an open-source LTE
platform, srsLTE [9]. Fig. 2 shows the experimental setup
using three commodity servers. One server runs the core
network i.e., Evolved Packet Core (EPC) (srsEPC), while
another server runs the base station (srsENB) which acts as

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

CORE
(EPC)

RAN
(eNB)

Virtual
UE

USB 3.0
USRP B210 USRP B210SFP+ USB 3.0

Fig. 2: Experimental setup using srsLTE and USRP SDRs.

the vRAN, and the third server acts as virtual User Equipment
(UE) (srsUE). The UE and eNodeB communicate using USRP
B210 SDRs (software-defined radios), which are connected
via USB 3.0 to the respective servers. All the experiments
are done on band 7 with 1x1 SISO antenna configuration in
a controlled indoor environment. The system configurations
and software instances used for conducting experiments are
presented in Table II. To ensure the study conducted on vRAN
is not affected by any other system-related factors, the features
are set as shown in Table III.

TABLE II: System configurations

Component Description

Processor Intel Xeon CPU E5-2630 @ 2.30 GHz
20 Core Dual NUMA socket

OS and Kernel Ubuntu 18.04.1; 5.4.0-122-generic
Cache 32 KB L1; 256 KB L2; 25.6 MB LLC

LLC-ways 20
Main Memory 62 GB

TABLE III: System parameters

Feature Status
Hardware prefetching, L1 data prefetching, Disabledadjacent cache line prefetching, and IP prefetching

C-States Off
Turbo mode Disabled

CPU governor Performance

Tools Used: We used the following tools to profile vRAN, to
make system-level changes, and to create a NN environment.

• isolcpus [19]: Removes the user specified CPUs from the
kernel’s Symmetrical Multiprocessing (SMP) balancing
and scheduler algorithms.

• perfstat [20]: Provides system-level information such as
cache hit/miss, memory bandwidth consumption, and
Instructions Per Cycle (IPC).

• pqos [21]: Allows the user to configure LLC-ways by
creating CLOS using Intel’s CAT tool.

• iperf3 [22]: To generate user traffic between UE and EPC.
• taskset [23]: To set or retrieve the CPU affinity of a

workload.
• Redis [24]: An open-source, in-memory data store used

to simulate a NN workload.
1) Impact of CPU core allocation: This study investigates

the effect of CPU core allocations on the performance of
vRAN. We identify the minimum number of CPU cores
required by the vRAN to achieve maximum throughput for
different PRB configurations. In general, all workloads running
on a server are scheduled by the kernel, which considers all

cores equivalent and can schedule a workload on any core or
combination of cores based on the workload’s requirements.
The core(s) assigned to a specific workload can change during
its execution for numerous reasons, including load balancing.
If the number of workloads exceeds the number of available
cores, then some of the workloads wait in a queue until the
cores become available. This typically results in a delay in
execution time, which in the case of vRAN can result in
a poor connection for UEs or loss of connectivity in the
worst-case scenario. To ensure that the vRAN gets sufficient
CPU cores to meet the tighter deadline, we leverage processor
affinity or CPU pinning to bind/pin it to a specific core(s). The
kernel then allocates the requested cores exclusively to the
vRAN, thereby preventing other tasks/workloads from being
scheduled on them.

We have conducted a series of experiments to identify
the minimum number of CPU cores required by the vRAN
to achieve the same throughput as when it operates under
ideal conditions for varying traffic loads. The ideal condition
is when all CPU cores are allocated to the vRAN and no
other workloads (NNs) are deployed on the same server.
In the first set of experiments, the vRAN is running under
ideal conditions. For each experiment in the set, we changed
only one configuration parameter i.e, PRBs and observed
the maximum achieved throughput for that particular PRB
configuration. We generated downlink TCP traffic from EPC
to UE using iperf3 tool for 120 secs and measured the average
throughput achieved.

The second set of experiments aims to find the bare mini-
mum number of CPU cores required by the vRAN to achieve
the same throughput as that under ideal conditions for various
PRB configurations. To determine the minimum number of
cores required for vRAN, we began by allocating a single core
using taskset tool and then increased the number of cores until
the throughput matched that of the ideal conditions.

6 15 25 50 75 100
0

20

40

60

80

PRBs

T
hr

ou
gh

pu
t

[M
bp

s]

Minimal
Ideal

Fig. 3: Throughput trends for vRAN in case of CPU ideal
and minimal.

6 15 25 50 75 100
0

2

4

6

8

PRBs

N
um

be
r

of
co

re
s

Fig. 4: Minimum number of cores required for vRAN to
achieve maximum throughput for different PRBs.

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3 shows the achieved throughput values under ideal
CPU allocation (first set of experiments) and minimal CPU
allocation (2nd set of experiments). It is clear that the corre-
sponding throughput values are same in both sets of experi-
ments for all different PRB configurations. This indicates that
we do not have to allocate all of the CPU cores of the server
to the vRAN to guarantee its KPIs.

Fig. 4 shows the minimum number of CPU cores required to
achieve the same performance as the ideal scenario of different
PRB configurations. It shows that the required number of CPU
cores increases with the number of PRBs, however, up to
25 PRBs, a single core is sufficient to achieve the maximum
throughput. By allocating the required number of CPU cores
to vRAN without affecting its performance, other workloads
can be deployed on the same server to utilize the remaining
CPU cores. CPU core pinning ensures that no other workload
is scheduled onto the CPU cores allocated to vRAN, thereby
creating isolation among the co-located workloads.

Observation 1: The number of CPU cores assigned to
vRAN significantly impacts its performance. Furthermore, the
number of cores required is a function of PRBs. By profiling
the vRAN, we can find the minimal number of cores required
for vRAN and allocate the remaining cores to other co-located
workloads for effective utilization of the system resources.

2) Impact of Noisy Neighbors (NNs): This study aims to
determine the impact of NNs on vRAN when they are de-
ployed on the same server. NN workloads demand a significant
amount of shared resources and cause resource contentions,
resulting in performance degradation to high priority, co-
located workloads like vRAN. Here, we focus on an often
overlooked shared resource i.e., LLC. Along with vRAN, we
deploy redis server as the NNs, which is cache intensive in
nature. We set the number of PRBs to 100, allocate six CPU
cores to vRAN (as shown in Fig. 4) and the remaining to
the NNs (by running multiple instances of redis). We again
generated a downlink TCP traffic for 120 secs to vRAN and
measured its achieved throughput.

Fig. 5 shows the achieved throughput of vRAN when it
runs in isolation (as shown earlier in Fig. 3) vis-a-vis when it
is co-located with the NNs. Even with a sufficient number
of cores assigned to the vRAN, it is clear from the plot
that its performance degrades by around 25% when it is co-
located with the NN. In order to determine the cause of this
degradation, we also measured the number of LLC misses
for the vRAN using perfstat tool and plotted them on Y2-
axis. The number of LLC misses experienced by the vRAN
is significantly higher when it is co-located with the NN.
It indicates that the majority of LLC-ways are occupied by
the NN, which substantially degraded the performance of the
vRAN. This study indicates that vRAN’s performance is also
sensitive to LLC-ways.

Observation 2: Core isolation alone is not sufficient to
guarantee KPIs of vRAN when it is co-located with NNs.
Contentions at LLC, due to NNs, can cause significant perfor-
mance degradation for vRAN.

Isolated With-NN
0

20

40

60

80

T
hr

ou
gh

pu
t

[M
bp

s]

0

0.5

1

1.5

2

L
L

C
M

is
s

[i
n

M
ill

io
n]Throughput

LLC Miss (Millions)

Fig. 5: Impact of NNs on vRAN throughput and
corresponding LLC miss rate.

3) Impact of LLC allocation: This study aims to determine
the effect of LLC allocations on vRAN performance. We
continue to use the same experimental setup as that used in
the previous subsection to study the impact of NNs. The LLC
allocations for vRAN are controlled by using CAT tool. We
start with allocating one LLC-way to vRAN and repeat the
experiments by adding more LLC-ways incrementally until
the desired maximum throughput (as shown earlier in Fig. 3)
was achieved.

Fig. 6 shows how the number of LLC-ways allocated for
100 PRBs affects the throughput of vRAN. It is clear that
the throughput has increased with the number of LLC-ways.
The throughput achieved when all (20) of the LLC-ways are
assigned to vRAN is identical to the throughput obtained when
nine LLC-ways are allocated to it. When we allocated fewer
than nine LLC-ways, we noticed a drop in throughput, and we
could not able to run vRAN with fewer than six LLC-ways.

All-Cache-Ways 6-Ways 7-Ways 8-Ways 9-Ways
0

20

40

60

80

LLC Allocation

T
hr

ou
gh

pu
t

[M
bp

s]

Throughput

Fig. 6: Impact of LLC allocation on vRAN throughput for
100 PRBs.

6 15 25 50 75 100
0

2

4

6

8

10

PRBs

N
um

be
r

of
L

L
C

-w
ay

s

Fig. 7: Minimum number of LLC-ways required for vRAN
to achieve maximum throughput for different PRBs.

We repeat this experiment for different PRB configurations
to determine the minimum required LLC-ways (refer Fig. 7)

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

to achieve the same throughput as when all of the LLC-ways
are allocated to vRAN without any NNs.

Observation 3: Adequate allocation of LLC-ways and CPU
cores along with core pinning is critical in achieving the
expected performance of vRAN in the presence of NNs.
Furthermore, the bare minimum LLC-ways is a function of
PRBs.

To the best of our knowledge, no existing work considered
the joint allocation of radio resources i.e., PRBs and system
resources (CPU cores and LLC-ways) to vRAN when it is co-
located with NNs on commodity servers. In the next section,
we propose JARS, an efficient resource allocation scheme
for dynamically adjusting the amount of radio and system
resources allocated to vRAN while guaranteeing its KPIs.

IV. PROPOSED WORK

This section first presents the system architecture of JARS,
then the mechanism for profiling vRAN, and finally the
proposed JARS scheme for dynamic resource allocation.

A. System Architecture

To capture the traffic characteristics and KPI requirements
of vRAN, we propose JARS with four core components:
Monitor Module, vRAN Profiler, Resource Table, and Control
Module (refer Fig. 8). The Monitor Module is in charge
of measuring the ingress traffic load of vRANs at one-
second interval. The vRAN Profiler builds the lookup table
by characterizing each vRAN in offline mode. The lookup
table lists the bare minimum radio and system resources that
need to be provisioned at the vRAN so that it achieves the
maximum performance for each of the ingress traffic loads.
The Resource Table keeps track of the resources (in terms
of cores, LLC-ways, and PRBs) that are allocated to the
vRAN and other co-located workloads deployed on the server.
The Control Module gets ingress traffic load information of
various vRANs deployed on the commodity server from the
monitor module and determines if the allocated resources are
sufficient or need to be adjusted by using a resource allocation
scheme.

Monitor Module

vRAN Profiler Resource Table

Control Module

vRAN 1 VNF 1 VNF 2

Data

Control

User Space

Kernel Space

Packets USRP

core 1 - T core K+1 - N-1

core 0

vRAN 2

core T+1 - K

Fig. 8: System architecture of JARS.

B. vRAN Profiling

In this section, we briefly describe the procedure followed
for profiling vRAN. The main goal of profiling a vRAN is to
understand its performance characteristics, and build a lookup
table, thereby helping the JARS in allocating system resources

in an effective manner. Generally, profiling takes place only
once for each vRAN and can be done offline. For profiling, we
consider a set S of PRB configurations that a mobile operator
supports in 4G/5G. The maximum theoretical traffic load that
various PRB configurations can support is known from 3GPP
specs [25]. Using this information, we generate downlink TCP
traffic using iperf3 tool by setting the traffic rate according to
the PRB’s theoretical maximum.

First, we profile vRAN to determine the minimum number
of cores required to handle the maximum theoretical traffic
load. To achieve this, we configure vRAN with a PRB value
from the set S and allocate all the cores in the server i.e., no
NNs; we then send the corresponding maximum theoretical
traffic to the vRAN and monitor the achieved throughput. If
the input traffic load and achieved throughput are comparable,
we gradually reduce the number of cores given to the vRAN
until we observe a noticeable difference between them. The
latest core allocation that did not result in any throughput
degradation is recorded as the best allocation. This procedure
is repeated for other PRB values in the set S, and the lookup
table is populated with the minimum core values for each of
the PRBs. Next, we profile vRAN for the least number of
LLC-ways required to handle the theoretical maximum traffic
load. This procedure is similar to that of profiling done to
determine the minimum number of cores, with the difference
that the cores allocated to the vRAN are fixed based on the
results of core profiling. The lookup table is populated with the
minimum required LLC-ways and the minimum required cores
for each of the PRB values using this profiling procedure. In
addition, we also keep the minimum traffic load that each PRB
configuration can support in the lookup table. The minimum
traffic load for any PRB configuration is obtained by adding
one to the maximum traffic load supported by the preceding
PRB configuration in the set S. Table IV shows a few entries
of the lookup table constructed by vRAN profiler. JARS picks
the most appropriate entry from the lookup table based on
the ingress traffic load of the vRAN and adjusts radio (PRBs)
and system resources (cores and LLC-ways) allocated to the
vRAN for each time interval.

TABLE IV: A sample lookup table from 4G vRAN profiling

Min. traffic load
[Mbps]

Max. traffic load
[Mbps]

PRB Cores LLC

35 52 75 4 5
53 71 100 6 9

C. Resource Allocation Scheme

As the input traffic load to vRAN changes over time, the
required resources need to be reconfigured rapidly to meet its
KPIs. The objective of the resource allocation scheme is to
perform efficient allocation of various resources to the vRAN
and other workloads running on the server for improving the
overall resource utilization. The proposed resource allocation
scheme is given in Algorithm 1, which is implemented in the
control module of JARS architecture. There could be multiple
vRANs (represented using an array vRAN) running on the
same server, along with other workloads (represented using

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

an array BE), and it is assumed that the server has enough
resources to meet the peak traffic demands of all the vRANs
deployed (N denotes the number of vRAN deployed on the
server). First, JARS identifies the workloads running on the
server and classifies them into two groups: vRAN and Best
Effort (BE). JARS considers vRAN workload as high priority
ones and other workloads as low priority, BE ones. We create a
separate CLOS for each vRAN (represented as ρ[i]) to allocate
dedicated system resources and a single CLOS (represented as
ρ[N+1]) for all of the BE workloads together (lines 3-9). The
proposed algorithm has two major phases: initial allocation
and dynamic allocation.

Algorithm 1: Proposed Resource Allocation Scheme
1 Input: Ingress traffic load of vRANs: λi, ∀i ∈ vRAN ; The

lookup table from vRAN profiling
2 Output: Radio and system resource allocations to the

vRANs and BE workloads
3 begin

// Initialization for vRAN workloads
4 for i = 1 to N do
5 ρ[i] ← vRANi

6 end
// Initialization for BE workloads

7 for k = 1 to M do
8 ρ[N+1] ← BEk

9 end
10 initial allocation(); // at t=0

// Dynamic allocation at each of other intervals
11 for t = 1, 2, . . . , do
12 re allocate resources();
13 end
14 end

Algorithm 2: initial allocation()
1 begin
2 for i = 1 to N do
3 Based on the ingress traffic load of vRANi, refer to

the lookup table to allocate radio and system
resources and update ρi

4 end
5 Distribute spare system resources to the BE workloads

and update ρN+1

6 end

1) Initial Allocation: Following the creation of CLOSs for
workloads, JARS first determines the required resources for
each vRAN based on the traffic loads (λi) for that vRAN by
using the lookup table and allocates them to the respective
vRANs. The remaining resources are then distributed to the
BE workloads running on the same server. This is done by
initial allocation() procedure (Algorithm 2). After allocat-
ing resources to each workload (vRAN/BE), the resource table
is updated to keep track of available resources.

2) Dynamic Allocation: Since the input traffic load of
vRAN changes over time, the required resources must be
reconfigured rapidly to meet the KPIs of the vRANs. For
each time interval t, resources are dynamically adjusted to
each vRAN based on its ingress traffic load at t − 1 by
calling re allocate resources() procedure (Algorithm 3).

Algorithm 3: re allocate resources()
1 begin
2 λi ← the current input traffic load of vRANi

// Compute the current resource requirements using the
lookup table

3 for i = 1 to N do
4 Measure the difference between the currently

allocated resources of vRANi and the resource
requirements based on the current traffic demand

5 end
// Resource release

6 for i = 1 to N do
7 if extra resources available at vRANi then
8 Release the surplus resources and add them to

resource pool and update ρi
9 end

10 end
// Resource acquire

11 for i = 1 to N do
12 if allocated resources at vRANi are not sufficient

then
13 if resource pool has sufficient resources then
14 Allocate additional required resources from

resource pool
15 Update ρi and resource pool
16 else
17 Measure the additional resources needed

compared to those already available from
resource pool and obtain from BE
workloads

18 Update ρi
19 end
20 end
21 end

// Resource allocation to BE workloads
22 if resource pool has spare resources then
23 Distribute the spare resources from resource pool

to the BE workloads and update ρN+1

24 end
25 end

resource pool is a two-dimensional array which maintains the
available resources (i.e., cores and LLC-ways) in the system.
The re allocate resource() procedure has four major steps:

Step 1: Determines the required resources for the co-located
vRANs based on their respective current traffic demands using
the lookup table (lines 2-5). A vRAN may either require
additional resources than its current allocation or release some
of its allocated resources.

Step 2: vRANs which need fewer cores and/or LLC-ways
than their current allocations release extra resources to the
resource pool. Then, the CLOS of vRAN is updated accord-
ingly (lines 6-10).

Step 3: Once all of the surplus resources from the co-
located vRANs have been released, vRANs that require more
cores and/or LLC-ways than their current allocations can claim
additional resources from the resource pool. If adequate
resources are available to satisfy vRAN’s requirements, the
appropriate resources are allocated. If resources are insufficient
after being allocated from resource pool, some resources are
claimed from the co-located BE workloads. Then, vRAN’s

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

Unmanaged Concordia Static JARS
0

0.2

0.4

0.6

0.8

1
A

ve
ra

ge
N

T
(A

N
T

)

Fig. 9: Variation in ANT for different schemes.

20 40 60 80 100 120
0

20

40

60

80

100

Time [Seconds]

T
hr

ou
gh

pu
t

[M
bp

s]

Ingress Traffic Load
Unmanged
Concordia
Static
JARS

Fig. 10: Variation in the observed throughput of vRAN vs
time for different input traffic loads.

CLOS is updated accordingly (lines 11-21).
Step 4: Consequently, if any free resources are available

after distributing to the co-located vRANs, they are allocated
to the co-located BE workloads deployed on the same server
(lines 22-24).

V. PERFORMANCE EVALUATION

Proposed JARS is compared with the following state-of-the-
art and baseline schemes:

1) Unmanaged (UM): In this scheme, the resource alloca-
tion procedure operates in a conventional manner i.e.,
there is no control over sharing of system resources. So,
UM is a contention-unaware scheme where all of the
co-located workloads contend for system resources like
CPU cores and LLC-ways without any isolation.

2) Concordia [4]: Depending upon the incoming traffic
load to vRAN, this scheme allocates only the required
number of CPU cores to it exclusively without providing
any LLC-ways exclusively. Like JARS, this also runs
at one-second interval and adjusts the number of CPU
cores allocated to it.

3) Static: In this scheme, system resources are liberally
assigned to vRAN based on the peak traffic load i.e.,
the maximum resources are allocated from the lookup
table irrespective of the current ingress traffic load to
the vRAN.

In the following, we present experimental and simulation
studies conducted to evaluate the performance of JARS.

A. Experimental Studies

We run a single instance of vRAN (srsENB from srsLTE
platform) along with the BE workloads (multiple instances

Static JARS
0

20

40

60

80

L
L

C
al

lo
ca

te
d

(%
)

vRAN BE workloads

Fig. 11: Average percentage of LLC for static and JARS
schemes.

20 40 60 80 100 120
0

2

4

6

8

10

Time [Seconds]

L
L

C
-w

ay
s

al
lo

ca
te

d

Static
JARS

Fig. 12: LLC allocations over time in case of static and
JARS schemes.

of redis) on a commodity server with 20 CPU cores and 20
LLC-ways. The experimental setup described in Section III-B
is used for conducting real-time experiments as well; downlink
TCP traffic is generated from EPC to UE for 120 secs using
iperf3 tool and observed the achieved throughput for four
different resource allocation schemes. The ingress traffic load
to vRAN is taken from the real traces available from [26].
Normalized Throughput (NT) is considered the performance
metric, which is defined as the ratio of achieved throughput
by the vRAN over the input traffic load to the vRAN. NT is
calculated for each time interval (with a granularity of one
second) and the average of NT over all the time instances is
reported as Average NT (ANT) in the plots.

Fig. 9 shows the observed ANT for four different resource
allocation schemes. JARS achieves 38% and 23% more ANT
than unmanaged and concordia schemes. This is due to the
fact that other schemes are not controlling either LLC or both
CPU and LLC, for which all of the workloads deployed on
the server compete, and therefore vRAN is not getting suf-
ficient resource(s). Whereas static scheme achieves the same
throughput as JARS due to the over-provision of resources.
As a result of over-provisioning, the underlying resources
remain underutilized and negatively impact other co-located
workloads. Fig. 10 shows the observed throughput of vRAN
over time for the considered traffic load for different schemes.

In addition to evaluating ANT, we measured the average
percentages of resources allocated to vRAN and other work-
loads using static and JARS schemes for the traffic load
shown in Fig. 10. Fig. 11 shows the average percentages of
LLC allocated to vRAN and other workloads. JARS saves
approximately 42% more LLC than static allocation while
maintaining the same performance. This means that other
workloads had access to only 55% of LLC in static allocation,
but in JARS allocation, they had access to 72% of LLC.
Fig. 12 shows the allocation of LLC to vRAN over time
for these two schemes. Fig. 13a shows the average of cores

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

Static JARS
0

50

100

C
or

es
al

lo
ca

te
d

(%
) vRAN

BE workloads

(a) Core allocation

Static JARS
0

50

100

PR
B

s
al

lo
ca

te
d

(%
)

(b) PRB allocation

Fig. 13: Percentage of system resource allocation for
different workloads in case of static and JARS schemes.

20 40 60 80 100 120
0

20

40

60

80

Time [Seconds]

In
gr

es
s

Tr
af

fic
[M

bp
s]

Traffic 1 Traffic 2 Traffic 3 Traffic 4 Traffic 5

Fig. 14: Ingress Traffic for different vRANs.

allocated in percentages. Using static, only 70% of cores were
allocated to other workloads, whereas JARS scheme allocated
80% of cores. Fig. 13b shows the average allocation of PRBs
in percentages, where JARS can save 28% of PRBs which
could help in power savings. For all resource allocations made
using JARS, more resources are allocated to other workloads
on average without affecting the performance of vRAN. This is
due to the fact that vRAN is configured with the bare minimal,
but sufficient resources based on its ingress traffic load.

B. Simulation Studies

To demonstrate the efficacy of JARS in a bigger setting,
we conducted simulation experiments by considering five
homogeneous servers (20 cores and 20 LLC-ways) running
one vRAN instance each along with BE workloads. Each
vRAN is subjected to a different ingress traffic load for
120 secs as shown in Fig. 14. The average percentages of LLC
allocated by static and JARS schemes are shown in Fig. 15a.
JARS outperforms static, saving 54% of LLC compared to
static. In static, BE workloads get 55% of LLC, whereas, in
JARS, they receive 78% of LLC. Fig. 15b shows the average
percentages of allocated cores, where JARS outperforms static
by saving 41% of cores. With static, BE workloads receive
70% of the cores on average, whereas in JARS, they receive
78% of LLC. Fig. 15c shows the average percentages of PRBs
allocated, where JARS outperforms static by reducing 36% of
PRBs. Thus, by effectively assigning resources for vRAN, BE
workloads receive extra resources.

C. Limitations of JARS

Predicting Ingress Traffic Load: In JARS, we considered
certain traffic load distribution to vRAN while adjusting

Static JARS
0

50

100

L
L

C
al

lo
ca

te
d

(%
) vRAN

BE workloads

(a) LLC allocation

Static JARS
0

50

100

C
or

es
al

lo
ca

te
d

(%
) vRAN

BE workloads

(b) Core allocation

Static JARS
0

50

100

PR
B

s
al

lo
ca

te
d

(%
)

(c) PRB allocation
Fig. 15: Average percentage of system and radio resource
allocations to workloads using static and JARS schemes.

radio and system resources at different time intervals. But,
it is not possible to accurately know the future traffic load
in real-world scenarios. Hence, the mobile operators have
to estimate the input traffic load for the next time interval
using historical traffic patterns received from the monitoring
module by employing forecasting mechanisms [27].

vRAN Profiling: The proposed JARS scheme relies on profil-
ing to characterize vRAN. We argue that the task of profiling
is not overhead as it takes place only once for each vRAN and
can be done offline. Moreover, we target network services like
vRAN that require stringent performance guarantees.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we studied the impact of resource contentions
on the vRAN KPIs and demonstrated why isolation both at the
core level and LLC are essential. Based on the observations,
we proposed JARS which jointly allocates sufficient number
of radio resources (PRBs) and system resources (CPU cores
and LLC-ways) to vRAN when it is co-located with other
workloads on commodity servers. Such an allocation not only
guaranteed the KPIs of the vRANs but also improved the
overall resource utilization of the server by offering spare
resources to the co-located workloads. Experimental results
on a prototype system showed that the proposed JARS scheme
improved the performance by 38% over a baseline mechanism
and 23% over Concordia, a state-of-the-art scheme. Future di-
rections include extending the proposed solution to integrating
ML mechanisms to predict traffic loads to vRAN. In addition,
we would like to study the effect of energy consumption of
vRAN in Noisy Neighbor scenarios.

ACKNOWLEDGMENT

This work has been supported by the project “CCRAN:
Energy Efficiency in Converged Cloud Radio Next Generation
Access Network” funded by Intel India.

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Andres Garcia-Saavedra, Xavier Costa-Perez, Douglas J. Leith, and
George Iosifidis. Fluidran: Optimized vran/mec orchestration. In Proc.
of IEEE INFOCOM, 2018.

[2] Jingchu Liu, Sheng Zhou, Jie Gong, Zhisheng Niu, and Shugong Xu.
Statistical multiplexing gain analysis of heterogeneous virtual base
station pools in cloud radio access networks. IEEE Transactions on
Wireless Communications, 15(8):5681–5694, 2016.

[3] Debashisha Mishra, Himank Gupta, Bheemarjuna Reddy Tamma, and
A. Antony Franklin. Kora: A framework for dynamic consolidation and
relocation of control units in virtualized 5g ran. In Proc. of IEEE ICC,
2018.

[4] Xenofon Foukas and Bozidar Radunovic. Concordia: Teaching the 5g
vran to share compute. In Proc. of ACM SIGCOMM, 2021.

[5] Tarik Taleb, Abdelquoddouss Laghrissi, and Djamel Eddine Ben-
salem. Toward ml/ai-based prediction of mobile service usage in next-
generation networks. IEEE Network, 34(4):106–111, 2020.

[6] Jaime Llorca, Antonia M. Tulino, Kyle Guan, Jairo Esteban, Matteo
Varvello, Nakjung Choi, and Daniel C. Kilper. Dynamic in-network
caching for energy efficient content delivery. In Proc. of IEEE INFO-
COM, 2013.

[7] Tuyen X. Tran, Abolfazl Hajisami, Parul Pandey, and Dario Pompili.
Collaborative mobile edge computing in 5g networks: New paradigms,
scenarios, and challenges. IEEE Communications Magazine, 55(4):54–
61, 2017.

[8] Xiaocheng Liu, Chen Wang, Bing Bing Zhou, Junliang Chen, Ting
Yang, and Albert Y. Zomaya. Priority-based consolidation of parallel
workloads in the cloud. IEEE Transactions on Parallel and Distributed
Systems, 24(9):1874–1883, 2013.

[9] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo
Serrano, Cristina Cano, and Doug J. Leith. Srslte: An open-source
platform for lte evolution and experimentation. In Proc. of ACM
WiNTECH, 2016.

[10] Mojgan Barahman, Luis M. Correia, and Lúcio Studer Ferreira. A qos-
demand-aware computing resource management scheme in cloud-ran.
IEEE Open Journal of the Communications Society, 1:1850–1863, 2020.

[11] Yongqin Fu and Xianbin Wang. Traffic prediction-enabled energy-
efficient dynamic computing resource allocation in cran based on deep
learning. IEEE Open Journal of the Communications Society, 3:159–
175, 2022.

[12] Francisco Muro, Eduardo Baena, Sergio Fortes, Lars Nielsen, and
Raquel Barco. Noisy neighbour impact assessment and prevention in
virtualized mobile networks. IEEE Transactions on Network and Service
Management, 2022.

[13] Hedi Bouattour, Yosra Ben Slimen, Marouane Mechteri, and Hanane
Biallach. Root cause analysis of noisy neighbors in a virtualized
infrastructure. In Proc. of IEEE WCNC, 2020.

[14] Paul Veitch, Chris Macnamara, and John J Browne. Balancing nfv
performance and energy efficiency. In Proc. of IEEE ICIN, 2022.

[15] Paul Veitch, Edel Curley, and Tomasz Kantecki. Performance evaluation
of cache allocation technology for nfv noisy neighbor mitigation. In
Proc. of IEEE NetSoft, 2017.

[16] Norbert Schramm, Torsten M. Runge, and Bernd E. Wolfinger. The
impact of cache partitioning on software-based packet processing. In
Proc. of IEEE NetSys, 2019.

[17] Venkatarami Reddy Chintapalli, Madhura Adeppady, Bheemar-
juna Reddy Tamma, and Antony Franklin A. Restrain: A dynamic and
cost-efficient resource management scheme for addressing performance
interference in nfv-based systems. Journal of Network and Computer
Applications, 201, 2022.

[18] Bin Li, Yipeng Wang, Ren Wang, Charlie Tai, Ravi Iyer, Zhu Zhou,
Andrew Herdrich, Tong Zhang, Ameer Haj-Ali, Ion Stoica, and Krste
Asanovic. Rldrm: Closed loop dynamic cache allocation with deep
reinforcement learning for network function virtualization. In Proc. of
IEEE NetSoft, 2020.

[19] Isolcpus. https://rb.gy/zdbmfs.
[20] perfstat. https://linux.die.net/man/1/perf-stat.
[21] pqos. https://manpages.ubuntu.com/manpages/xenial/man8/pqos.8.html.
[22] iperf3. https://iperf.fr/iperf-download.php.
[23] Taskset. https://man7.org/linux/man-pages/man1/taskset.1.html.
[24] redis. https://redis.io/topics/benchmarks.
[25] 3GPP. Ts 36.213, evolved universal terrestrial radio access (e-utra);

physical layer procedures.
[26] Mehul Sharma, Ujjwal Pawar, A Antony Franklin, and Bheemar-

juna Reddy Tamma. Proactive clustering of base stations in 5gc-ran
using cellular traffic prediction. In Proc. of IEEE NetSoft, 2022.

[27] Jorge Martı́n-Pérez, Koteswararao Kondepu, Danny De Vleeschauwer,
Venkatarami Reddy, Carlos Guimarães, Andrea Sgambelluri, Luca Val-
carenghi, Chrysa Papagianni, and Carlos J. Bernardos. Dimensioning
v2n services in 5g networks through forecast-based scaling. IEEE
Access, 10:9587–9602, 2022.

2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on February 09,2024 at 05:58:50 UTC from IEEE Xplore. Restrictions apply.

