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Abstract

Intrusion detection is a form of anomalous activity detection in communication
network traffic. Continual learning (CL) approaches to the intrusion detection task
accumulate old knowledge while adapting to the latest threat knowledge. Previous
works have shown the effectiveness of memory replay-based CL approaches for this
task. In this work, we present two novel contributions to improve the performance
of CL-based network intrusion detection in the context of class imbalance and
scalability. First, we extend class balancing reservoir sampling (CBRS), a memory-
based CL method, to address the problems of severe class imbalance for large
datasets. Second, we propose a novel approach titled perturbation assistance for
parameter approximation (PAPA) based on the Gaussian mixture model to reduce
the number of virtual stochastic gradient descent (SGD) parameter computations
needed to discover maximally interfering samples for CL. We demonstrate that
the proposed approaches perform remarkably better than the baselines on standard
intrusion detection benchmarks created over shorter periods (KDDCUP’99, NSL-
KDD, CICIDS-2017/2018, UNSW-NB15, and CTU-13) and a longer period with
distribution shift (AnoShift). We also validated proposed approaches on standard
continual learning benchmarks (SVHN, CIFAR-10/100, and CLEAR-10/100) and
anomaly detection benchmarks (SMAP, SMD, and MSL). Further, the proposed
PAPA approach significantly lowers the number of virtual SGD update operations,
thus resulting in training time savings in the range of 12 to 40% compared to the
maximally interfered samples retrieval algorithm.

1 Introduction

Learning from a continuum of data with distribution shift over time is known as continual/lifelong
learning (CL) [1, 2]. CL algorithms aim to preserve learned knowledge (stability) while embracing the
knowledge of new tasks (plasticity). The conflict in balancing stability and plasticity often leads to the
problem of catastrophic forgetting (CF) [3, 4]. In other words, past tasks’ knowledge degrades over
time due to interference from the newer task. Unlike computer vision [5, 6, 7, 8], natural language
processing [9, 10], and speech processing [11, 12], CL applications to many real-world problems
are under-explored, and one such exemplar is network intrusion detection (NID) in communication
networks. Intrusion detection is a form of distribution shift detection that aims to detect anomalous
activity patterns in the network traffic [13, 14]. To ensure protection against novel cyber-attacks,
network intrusion detection systems (NIDS) must evolve continuously and effortlessly learn from the
newer attack data.

The concept drift/distribution shift is prevalent in cybersecurity, as malicious behavior can shift
either suddenly or gradually over time [15, 13]. While NID formulated as anomaly detection (AD) is
typically trained on normal data (zero positive learning [16]) and is immune to the drift of malicious
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behavior, however, its performance can be severely affected when the distribution of normality
shifts [14] (open-world setting). In the cybersecurity domain, a shift in normality can occur when
new patches, software updates, devices, or protocols are introduced [14, 13]. This work considers
normality shifts and distribution shifts in attack data. So, we formulate our problem as a continual
learning-based supervised binary classification problem (SBCP).

Class imbalance and Task-free nature: SBCP formulation differs from the traditional classification
problem as the former one possesses two challenging characteristics [17],i.e., class imbalance (CI)
and class overlap. In this work, our focus is primarily on mitigating the adverse effects of class
imbalance on performance. Here, CI means a different number of training examples (nt) for each class
in the dataset. The majority class contains the highest number of training examples, whereas minority
classes are the last few classes when sorted in non-increasing order based on nt. CI is said to be severe
when the difference between the minority class training examples (nt) is relatively high (e.g., the
difference between the number of samples of DDoS attack-HOIC and SQL Injection attack (minority)
classes of the CICIDS-2018 [18] dataset is 2.1 million). Intrusion detection generally operates in a
streaming environment. As a result, task-free continual learning [19] becomes a natural fit for such
applications. Working in a task-free CL setup assumes no information about task boundaries and the
number of samples per class.

Continual learning with shallow methods: We study the feasibility of shallow methods (non-neural
networks) in the CL setting by conducting preliminary experimenting using the random forest (RF)
algorithm (a popular algorithm in NIDS literature) on CICIDS-2017 and CICIDS-2018 datasets.
We made the following observations: First, RF exhibits higher CF (especially on minority classes)
on previous tasks while learning new tasks. Second, augmenting RF with buffer memory partially
reduces the CF on previous tasks. More details on this experiment are available in the supplementary
material (SM:A.2). To conclude, compared to deep learning (neural network) methods, shallow
methods exhibit higher CF, thus diminishing their performance in the CL setting.

Prior art [20] has demonstrated the suitability of CL for addressing the NID problem. This work
shown the adverse impact of severe class imbalance on the performance of NID algorithms. This work
also demonstrated the usefulness of memory replay (MR)-based approaches for this task. Generally,
class imbalance-aware MR methods (e.g., class balancing reservoir sampling (CBRS) [21]) perform
a periodic memory population operation to handle class imbalance. In particular, CBRS distinguishes
majority and minority classes based on the respective class sample count (local information) from the
buffer memory. However, this strategy has a pitfall when the count of minority class samples in the
finite buffer memory appears to come from a majority class. This situation could occur when there is
a severe imbalance among the minority classes, especially in larger datasets. Larger datasets mean the
number of training samples in the order of millions (CICIDS-2018, AnoShift). In this work, we extend
the CBRS method (and call it ECBRS) to address this issue. The proposed ECBRS always prioritizes
the majority class for sample replacement using additional global information about class imbalance.
Table 1: Timing comparison between the virtual
SGD operations and the total training of the MIR
algorithm. Each experiment is repeated five times,
and mean values are reported for virtual SGD ops
time and total train time.

MIR (time in seconds)

Dataset VSP ops time Total train time VSP ops proportion

CICIDS-2017 [22] 102.9 254.3 40.4%
UNSW-NB15 [23] 132.4 428.2 30.9 %
CTU-13 [24] 142.4 398.1 35.7%
KDDCUP’99 [25] 191.0 420.8 45.3%
AnoShift [26] 499.4 1210.4 41.2%
CICIDS-2018 [22] 3315.0 7620 43.5%

SVHN [27] 112.0 217.0 51.6%
CIFAR-10 [28] 58.6 118.6 49.4%
CIFAR-100 [28] 45.71 88.56 51.61%
CLEAR-10 [29] 128.2 265.9 48.2%
CLEAR-100 [29] 703.6 1490 47.2%

Other families of MR techniques like maximally
interfered retrieval (MIR) [30] and gradient-
based memory editing (GMED) [31] quantify
the significance of samples in the buffer memory
using temporary (virtual) stochastic gradient de-
scent (SGD) parameter updates. However, this
computation overhead consumes nearly 40 to
50% of the total training time, as shown in Ta-
ble 1. Motivated by this drawback, we propose
a novel approach known as perturbation assis-
tance for parameter approximation (PAPA) for
estimating the virtual SGD parameter (VSP) up-
dates using the Gaussian mixture model (GMM)
with low overhead.

To summarise, our key contributions in this work are:

1. An extension to the CBRS, dubbed ECBRS, to deal with severe class imbalance by always
undermining the majority class by maintaining the global information about class imbalance.
Further, ECBRS can be used as a memory population policy in conjunction with the existing
memory replay-based approaches.
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2. A perturbation assistance for parameter approximation (PAPA) method for estimating VSP
updates that significantly reduces the training time for methods like MIR and GMED, leading
to improved scalability.

3. A demonstration of the improved performance of the proposed methods relative to the
considered baselines using standard network intrusion detection, computer vision, and
anomaly detection benchmarks (including AnoShift and CLEAR-100, whose training data
spans over ten years). Further, we show that using the PAPA method results in training time
savings of 12 to 40% (relative to the baselines), thus it is highly suitable for large-scale
training.

2 Related Work
Intrusion detection: An intrusion detection system (IDS) [32, 33] is one of the fundamental tools in
security infrastructure to safeguard against cyber-attacks at the host or network (NIDS) perimeter
level [34]. A signature-based NIDS uses a rule-based engine to identify known patterns, whereas
anomaly-based NIDS identifies patterns that deviate from normal behavior [35]. NIDS are built
using techniques ranging from traditional machine learning to deep learning and reinforcement
learning [36]. Typically, network intrusions represent a tiny subset of network traffic [37]. As a result,
a heavy class imbalance is observed in NID datasets, making the intrusion detection performance
vulnerable. Sampling (algorithm) based approaches have been proposed in the literature to mitigate
this problem [38, 39, 40]. But, this work focuses on building an NIDS that adapts to both benign and
attack data distribution shifts without any aid of sampling strategies to handle the CI effect.

Continual learning: Recently, there has been a significant effort to expand the horizon of continual
learning by mitigating the impact of CF [4]. These efforts can be broadly grouped into the following
families [3]: regularization-based [41, 42], expansion-based [43], meta-learning-based [44], and
rehearsal or memory replay-based approaches.

A subset of rehearsal methods that focus on class imbalance are CBRS [21] and partition reservoir
sampling [45], in which samples are preserved in memory in proportion to their class strength.
However, these methods do not handle severe CI between the minority samples. The proposed
ECBRS addresses this CI issue. Further works like maximum interfered retrieval (MIR) [30] and
gradient-based sample editing (GMED) [31] use virtual SGD parameter updates to identify the most
interfered samples. These are samples in the replay memory that suffer an increase in loss due to
previous parameter updates. However, for large-scale training, these virtual update computations add
significant overhead. Unlike these, our proposed PAPA method significantly reduces this overhead,
making it suitable for training over large datasets.
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(d) ECBRS

Figure 1: Comparison between CBRS and ECBRS over an imbalanced stream from a CICIDS-2018
dataset setting with a memory size (M) = 1500. (a) Running statistics indicate the number of
classwise samples seen so far. (b) Memory distribution represents the strength of each class in buffer
memory at a particular instance. Upon the arrival of ten new samples from the class attack5, using
CBRS, the memory distribution changes to (c). However, using ECBRS, the memory distribution
changes to (d). For (c) and (d), the class with the red-colored bar is chosen for replacement, the
green-colored bar class receives new samples, and the class with the blue-colored bar remains intact.
Detailed illustrations of these configuration changes for CBRS and ECBRS are presented in the
supplementary material (SM:A.3).

3 Methodology
In this section, we present the proposed ECBRS and PAPA methods. In the ECBRS method, we
adopt two definitions introduced in the base paper of CBRS [21]. They are full and largest classes.
When a particular class contains the most instances among all the different classes in the memory,
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we call it the largest. Two or more classes can be the largest if they have the same size. We call a
class full if it currently is, or has been in one of the previous time steps, the largest class. Once a
class becomes full, it remains so in the future. More details of the CBRS algorithm are given in the
supplementary material (SM:A.14).

3.1 ECBRS: An Extended Class Balancing Reservoir Sampling Algorithm
The legacy CBRS algorithm assigns higher probability weights to minority class samples using a
weighted replay approach. However, these weights are computed based on the number of data samples
in the buffer memory (local information). This approach has a limitation when the class imbalance
present between the minority classes themselves is severe. This limitation is illustrated in Figure 1,
where running statistics of each class is the corresponding class running frequency(refer Figure 1a),
and benign is the maximal (majority) class. Typically, the benign class samples must be chosen for
replacement whenever new minority class samples arrive. However, CBRS treats all classes equally
for a replacement to accommodate newly arrived attack5 (minority) class samples (instead of the
benign class). This is because CBRS relies on local information for sample replacement. From
Figure 1b, all class samples appear to be the majority classes in the buffer memory distribution.
As a result, different class samples in memory are uniformly selected for sample replacement
(refer Figure 1c, in which red-colored classes are chosen for sample replacement for accommodating
newly arrived attack5 class samples). This choice will have an adverse impact on large-scale training,
where the class imbalance between the minority classes is significant. Motivated by this, we extended
the CBRS to rely on each class’s running statistics (global information) for replacement decision-
making. Our method (ECBRS) will always prefer the class with higher global information until a
threshold γ (refer Equation 1), later it will choose the class with the next highest running statistic
value, thereby ensuring that a majority class sample is replaced in the memory buffer. In summary,
we use original class labels to organize the buffer memory to learn SBCP and choose class samples
in memory with higher running statistic values for the replacement to accommodate newly arriving
samples.

Further, the class imbalance among minority classes poses another challenge known as the conflict of
equal weights. It will occur whenever the majority (maximal) class samples are completely replaced

Algorithm 1 Memory population for ECBRS

Input: data stream: (xi, yi)
n
i=1, number of currently

stored instances of class (c≡ yi): mc, number of
stream instances of class c≡ yi encountered so far: nc

for i = 1 to n do
if memory is not filled then

store (xi, yi);
else

if yi is not a full class then
select a class that is the largest, having higher
running statistics value and non-zero samples
with mc ≥ γ(c) in the buffer. Otherwise,
select a class with the next higher running
statistic value with mc ≥ γ(c);
overwrite the selected class sample with
(xi, yi);

else
sample u ∼ Uniform(0,1);
if u ≤ mc/nc then

pick a stored instance of class c ≡ yi at
random and replace it with (xi, yi);

else
Ignore (xi, yi);

end if
end if

end if
end for

or underrepresented in the buffer memory. So,
undermining the chosen minority class based on
global information will lead to the loss of the
essential samples in combating the class imbal-
ance problem. This drawback can be mitigated
by disallowing the undermining of the minority
class beyond a certain threshold γ. In ECBRS
method, we choose this parameter based on
global information. Thus, we guarantee that at-
tack class samples can never be replaced beyond
this threshold. From Figure 1d, it can be ob-
served that the proposed ECBRS initially chose
benign class samples for replacements to accom-
modate newly arriving attack5 class samples, as
it has the highest running statistics value. In the
process of sample replacement, once it reaches
the threshold of the benign class (γ(.)= 262),
ECBRS selects the class with the next highest
running static value (attack4). Thus remaining,
different class samples (colored blue) will re-
main intact. We compute γ(·) (for class i) as the
expected number of samples to be present based
on the global information, as shown in Equa-
tion 1.

γ(i) = m× w(i), (1)

where i is the class index, w(i) = exp(−ni)∑
j exp(−nj)

,

m is the buffer memory capacity, γ(i), ni are the threshold and running class frequency for class i,
respectively, and w(i) is the weight associated with class i. w(i) is the softmax of the negative running
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frequencies favoring the minority classes. In our experiments, we also observe that computing a
single loss over the replayed and stream samples achieves better performance compared to CBRS
(which involves computing two-component loss). One pragmatic reason for this behavior could be
that concatenating replay samples with stream samples achieves better batch-wise class balance. We
present the pseudo-code of the proposed ECBRS in Algorithm 1.
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Figure 2: t-SNE visualization of regular SGD updates and virtual SGD updates. An MLP is trained
on the CICIDS-2017 and CICIDS-2018 datasets. A ResNet-18 (pretrain [46]) model is trained on the
CIFAR-10 and CLEAR-10 datasets.

3.2 Perturbation Assistance for Parameter Approximation (PAPA)
Memory replay-based CL techniques such as MIR and GMED select a subset of samples from the
buffer memory based on the loss incurred during virtual stochastic gradient descent (SGD) parameter
(VSP) updates. Samples that incur a higher loss are preferred. These updates are computed using
the current batch of the incoming stream samples. Further, these updates are ignored after the subset
selection. For lengthy data streams (used to train very deep models), these frequent VSP updates
result in significant computational overhead (due to SGD operations). Each SGD involves computing
the gradients for larger weight matrices, leading to increased computational overhead.
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Figure 3: For randomly chosen model parameters,
the plots show the distribution of the error between
the regular SGD parameter updates and virtual
SGD parameter updates on various datasets. In
(a) and (b), an MLP is trained on CICIDS-2017
and CICIDS-2018. In (c) and (d), a ResNet-18 is
trained on CIFAR-10 and CLEAR-10.

Motivated by this problem, we try to understand
the relationship between the regular and vir-
tual SGD update operations. Towards this, we
plot various t-SNE visualizations on CICIDS-
2017, CICIDS-2018, CIFAR-10, and CLEAR-
10 datasets. The CIDIDS-2017 and CICIDS-
2018 datasets are used to train an MLP, and
the CIFAR-10 and CLEAR-10 datasets are used
to train a ResNet-18 model (refer Figure 2).
We make the following observations from these
plots: virtual SGD parameter update is a slowly
varying process. In other words, the VSP over-
laps with or is scattered closely around the regu-
lar SGD updates. One way to capture this notion
is to sufficiently perturb the regular SGD param-
eter (RSP) updates to estimate the VSP updates.
Then, the next question is: how to quantify the
perturbation required for a given task?

To quantify the perturbation, we model the error
(difference between the VSP and RSP) distribu-
tion of randomly chosen model parameters on
a diverse set of benchmarks. These are shown
in Figure 3. We observe that the error values of
the chosen parameters exhibit a skewed Gaus-
sian (heavy-tailed) distribution. We model this
error distribution using a two-component Gaus-
sian mixture model (GMM). However, mod-
elling individual error components with a GMM
is a time-consuming process. So, we model the
joint distribution P(Θe) of error values of all
the parameters using a GMM, whose marginals
remain Gaussian. As a result, each parameter-
level error distribution is preserved.
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Thus, our approach for approximating the VSP is mathematically formulated as a simple additive
model which is given in Equation 2.

Θvpu = Θrpu + Z (2)

The perturbation Z is drawn from P(Θe) where P(Θe) = π1N (Θ1|µ1,Σ1) + π2N (Θ2|µ2,Σ2),
where µ1, µ2, are the mean vectors and Σ1,Σ2 are the covariance matrices of the two Gaussian
components, respectively. π1, π2 are the mixing coefficients and Θrpu is the most recent regular
parameter update.

GMM Training: We use the MIR algorithm for the first CL task in our proposed approach to estimate
the error distribution (ED). This ED is used to train the GMM once, and this GMM is used in all
remaining tasks. Our empirical study also confirms that different first task (used to construct ED) has
no adverse effect on the performance results (refer to SM:A.10.2). The pseudo-code of the proposed
PAPA method is outlined in Algorithm 2.
4 Experiments and Analysis

Algorithm 2 Perturbation assistance for parameter approxi-
mation
1: Input: data stream (xi, yi)

n
i=1, initial task T1, maximally

interfered retrieval algorithmMIR(·), gaussian mixture
model with two components GMM, buffer memoryM,
perturbation array P , policy to update buffer memory
ρ, function approximator f(x, y : Θ), parameters after
updating on previous batch of samples Θrpu.

2: for the task T1 do
3: sample batch Bj ∼ T1

4: render Θj−1; parameters after updating on Bj−1

5: RunMIR(Bj)
6: store Θj ; parameters after updating on Bj

7: store (Θj −Θj−1) to P
8: end for
9: train a GMM using P

10: for remaining tasks do
11: sample batch B from current task
12: sample Z ∼ GMM
13: Θvpu = Θrpu + Z
14: S ← compute interfere samples using Θvpu onM
15: Bint ← subsample from S based on certain criteria
16: Bnew = B ∪ Bint

17: train f(· : Θ) with Bnew

18: updateM with ρ using B
19: end for

Datasets and Tasks Formulation: We
conduct the experiments in the domain-
incremental (class labels space is fixed to
benign and attack, whereas data space hori-
zon may change) learning approach, simi-
lar to the prior study [20]. We created tasks
by dividing the benign data and combin-
ing them with attack class samples. This
approach ensures that each task contains a
mix of benign and attack data, maintaining
the class imbalance resembling real-world
network traffic. We created five tasks for
KDDCUP’99 [25] and NSL-KDD [47], ten
for CICIDS-2017/2018 [22, 48], nine for
UNSW-NB [23, 49, 50, 51, 52], and ten for
AnoShift [26] benchmark.

Existing network intrusion detection bench-
marks are artificially created over short
time periods and may not exhibit natural
distribution shifts [13] (except AnoShift).
Distribution shifts are quantified by the op-
timal transport dataset distance (OTDD)
(refer to Table 2). Large OTDD values in-
dicate a higher distribution shift. More de-
tails on how OTDD values are computed

for each dataset are available in SM:A.7. Due to the absence of distribution shifts in NIDS datasets,
the proposed approaches were validated using computer vision (CV) CL benchmarks. Furthermore,
the ease of visualizing distribution shifts makes CV benchmarks suitable for validating the proposed
approaches. For CV benchmarks, we randomly selected one or more classes as the attack classes. We
split and distributed the attack class data among the remaining benign classes. This way of class split-
ting ensures experiments formulated using vision benchmarks are identical to the intrusion detection
experiments. Specifically, we created nine tasks for SVHN [27] and CIFAR-10 [28]. Similarly, we
created ten tasks for the CIFAR-100 [28] benchmark using the coarse/super class labels. The data
spanned over ten years for the CLEAR-10/100 [29] benchmark and contained all the classes’ natural
temporal evolution for each year. We created ten tasks as the data spans a decade. We also maintained
1:100 class imbalance ratio per task in CIFAR-100, CLEAR-10, and CLEAR-100 experiments. More
details about datasets, preprocessing (and feature selection), and task formulations are presented in
SM:A.4, SM:A.5, and SM:A.6.

Baselines: We compare the proposed ECBRS method with elastic weight consolidation (EWC) [41],
synaptic intelligence (SI) [42] (regularization methods), memory(+gradient)-based algorithms like gra-
dient episodic memory(GEM) [53], A-GEM [54], gradient-based sample selection (GSS-greedy) [55],
and rehearsal-based methods like MIR [30], and CBRS [21]. We compare the proposed PAPA with the
MIR algorithm in all facets. We deliberately omit partition reservoir sampling [45] and GMED [31]
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as the former approach is designed for the multi-label classification setting, and example editing of
the latter one is trivial for intrusion data. Additionally, we do not consider INSOMNIA [56], as this
work does not operate in the explicit continual learning setup and relies on existing works to identify
distribution shifts and pseudo-label generation.

Architecture details: The ResNet-18 [46] architecture (pre-trained on Imagenet) is used as the
backbone for SVHN, CIFAR-10/100 and CLEAR-10/100, followed by a fully connected network.
We use a multi-layer, fully connected network for the NID datasets. We use RMSProp optimizer for
intrusion detection and SGD with Nesterov momentum 0.9 and weight decay 10−4 for computer vi-
sion benchmarks, respectively. A batch size of 128 is used for MNIST, SVHN, CIFAR-10/100, 10 for
CLEAR-10/100, and 1024 for the rest of the datasets except for NSL-KDD, for which it is 500. More
details on batch size, architecture, hyperparameters, and implementation are presented in SM:A.11.

Table 2: Average optimal transport
dataset distance (OTDD) values of se-
lective intrusion detection and computer
vision benchmark datasets.

Dataset Avg. OTDD values

CICIDS-2018 [18] 0.0508
CICIDS-2017 [18] 0.1527
CTU-13 [24] 4.44
CIFAR-10 [28] 231
CIFAR-100 [28] 3139
AnoShift [26] 7189

Memory size (M): We use M=13333 for the CICIDS-
2017, 2018 and AnoShift datasets. For the KDDCUP’99
dataset, M=5333, and M=1333 for the NSL-KDD dataset.
M=500 for the SVHN and CIFAR-10/100 datasets.
For the CLEAR-10 dataset, M=666, and M=2666 for
CLEAR-100 datasets. 75% of the buffer memory samples
are used for replay. Additional details and an ablation
study on M are presented in SM:A.10.2.

Evaluation metrics: We chose metrics similar to [26, 15].
Specifically, we use the receiver operating characteristic
area under the curve (ROC-AUC) metric and the precision-
recall area under the curve (PR-AUC) metric for both

benign and attack data denoted as PR-AUC (B) and PR-AUC (A), respectively.

Table 3: Performance results comparison of the proposed ECBRS method with the baselines on
network intrusion detection and computer vision benchmarks. We report the arithmetic mean with
each experiment repeated five times independently. The performance results of the MIR using ECBRS
as a memory population method are highlighted in light grey.

KDDCUP’99 NSL-KDD CICIDS-2017 CICIDS-2018

Baseline Methods PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

EWC [41] 1.000 0.694 0.995 0.949 0.852 0.927 0.617 0.766 0.608 0.740 0.762 0.505
SI [42] 1.000 0.793 0.997 0.949 0.885 0.930 0.812 0.878 0.868 0.804 0.826 0.744
GEM [53] 1.000 0.918 0.999 0.968 0.941 0.959 0.993 0.988 0.991 0.739 0.762 0.502
A-GEM [54] 1.000 0.892 0.999 0.958 0.925 0.946 0.84 0.852 0.696 0.738 0.762 0.5
GSS-greedy [55] 1.000 0.680 0.997 0.951 0.881 0.933 0.807 0.827 0.742 0.8215 0.762 0.664
MIR [30] 1.000 0.767 0.996 0.923 0.861 0.918 0.785 0.840 0.798 0.737 0.762 0.5
CBRS [21] 1.000 0.896 0.999 0.929 0.969 0.960 0.999 0.999 0.999 0.999 0.999 0.998

ECBRS (ours) 1.000 0.982 0.999 0.970 0.967 0.969 1.00 0.999 0.999 0.999 0.999 0.998
MIR + ECBRS 1.000 0.929 0.999 0.958 0.966 0.965 1.00 1.00 0.999 0.994 0.994 0.992

UNSWNB-15 CTU-13 AnoShift SVHN

Baseline Methods PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

EWC 0.925 0.823 0.913 1.00 1.00 0.999 0.543 0.566 0.550 0.971 0.953 0.964
SI 0.985 0.989 0.990 1.00 1.00 0.999 0.620 0.609 0.631 0.970 0.954 0.963
GEM 0.998 0.995 0.994 1.00 1.00 0.999 0.880 0.900 0.902 0.977 0.964 0.973
A-GEM 0.750 0.750 0.500 0.750 0.750 0.500 0.846 0.900 0.883 0.977 0.962 0.971
GSS-greedy 0.949 0.848 0.959 1.00 1.00 0.999 0.742 0.744 0.753 0.980 0.968 0.975
MIR 0.886 0.807 0.855 0.950 0.950 0.899 0.655 0.609 0.620 0.972 0.961 0.967
CBRS 0.999 0.999 0.999 1.00 0.999 0.999 0.949 0.939 0.941 0.954 0.957 0.955

ECBRS (ours) 0.999 0.999 0.999 1.00 1.00 0.999 0.949 0.944 0.948 0.978 0.968 0.974
MIR + ECBRS 0.999 0.999 0.999 1.00 1.00 0.999 0.942 0.928 0.934 0.980 0.972 0.976

CIFAR-10 CIFAR-100 CLEAR-10 CLEAR-100

Baseline Methods PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC PR-AUC (A) PR-AUC (B) ROC-AUC

EWC 0.931 0.917 0.925 0.644 0.603 0.644 0.858 0.828 0.835 0.770 0.764 0.778
SI 0.929 0.915 0.925 0.645 0.614 0.635 0.847 0.833 0.835 0.766 0.753 0.772
GEM 0.931 0.919 0.928 0.653 0.626 0.643 0.858 0.852 0.848 0.818 0.800 0.813
A-GEM 0.925 0.903 0.916 0.638 0.591 0.638 0.853 0.822 0.833 0.772 0.766 0.780
GSS-greedy 0.944 0.932 0.940 0.659 0.646 0.662 0.881 0.850 0.861 0.733 0.691 0.721
MIR 0.941 0.936 0.939 0.640 0.640 0.636 0.890 0.885 0.887 0.837 0.800 0.82
CBRS 0.883 0.889 0.890 0.572 0.598 0.572 0.941 0.927 0.931 0.841 0.789 0.82

ECBRS (ours) 0.953 0.941 0.948 0.663 0.611 0.663 0.937 0.926 0.926 0.854 0.807 0.831
MIR + ECBRS 0.949 0.936 0.944 0.663 0.659 0.663 0.953 0.933 0.942 0.839 0.793 0.817

4.1 Quantitative analysis
ECBRS: We present the performance results of the proposed ECBRS algorithm and its comparison
with the baselines on network intrusion detection and computer vision benchmarks in Table 3. We
make the following observations. First, we observe that ECBRS either outperforms or is on par
with all the baselines on all twelve benchmarks. Second, the performance results of the ECBRS
are enhanced over CBRS when both benign and attack data exhibit frequent distribution shifts,
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especially on AnoShift, SVHN, CIFAR-10, CIFAR-100, CLEAR-10, and CLEAR-100 benchmarks.
Specifically, ECBRS achieves 7% (avg) and 3% (avg) performance gains in attack and benign sample
detection in terms of PR-AUC (A) and PR-AUC (B) values relative to the CBRS on aforementioned
benchmarks. Third, GEM, AGEM, and GSS-greedy methods strongly compete with our approach.
Specifically, for GEM and A-GEM, the reason for this would be due to the usage of the ring buffer
memory organization policy [57, 58] that stores task-wise representative samples, which are used
to reduce CF of previous tasks [53, 54], thus allowing positive backward transfer by constraining
directions of the gradient projections. However, such a buffer organization policy requires knowing
task boundaries apriori. Despite their effectiveness, such a policy is inappropriate in an online
task-free continual learning setting like streaming intrusion detection in which task boundaries and
the number of tasks are unknown. On the contrary, our approach organizes the memory as a pool in
which any memory slot can be chosen for replacement. Eventually, we observe that training time
for larger datasets is high for gradient-based methods like GEM and GSS-greedy. As a result, we
omit the most recent gradient-based memory replay methods like online corset selection (OCS) [59]
in our baselines (refer to SM:A.10.1 for more details). Besides, ECBRS is an efficient algorithm
with respect to total training time, and it outperforms CBRS in total training time on five benchmark
datasets. More discussions on training times are available in SM:A.8.

ECBRS as a memory population method: We can also integrate ECBRS as a memory population
technique with other memory replay-based continual learning algorithms. Specifically, we demon-
strate this for the MIR algorithm and observe an average performance gain of 12% and 14% in terms
of PR-AUC (A) and PR-AUC (B) values relative to MIR. We observe that the performance gains
of using ECBRS will increase with large-scale benchmarks, especially on AnoShift, CICIDS-2018,
UNSW-NB15, and CICIDS-2017 benchmarks. We achieved an average gain of 30% (PR-AUC
(A)) and 31% (PR-AUC (B)) on the aforementioned benchmarks. The results of the MIR+ECBRS
algorithm (rows) are highlighted in light grey in Table 3. In the ECBRS experiments, we use the
random memory population method for the MIR algorithm.

Threshold parameter (γ): As described earlier, we are also interested in learning the distribution
shifts of the benign data. Since there are two distribution shifts to adapt to, one may wonder which
one is more important. The answer depends on the problem context; intrusion detection requires
paying more attention to the distribution shifts in attack traffic, which can be controlled using the
hyperparameter w(·). We conduct extensive experiments on intrusion detection and computer vision
benchmarks to understand the behavior of setting the default value for the w(·) Equation 1. We found
that all the datasets’ performance is consistent for the lower w(·) value, so we used a fixed value of
0.1. Eventually, w(·) will be multiplied by the buffer memory size to obtain the expected number of
samples per class (γ) to be present in the buffer memory. Ablation studies on γ(.) are presented in
SM:A.10.1.

Table 4: Performance comparison of the proposed PAPA method with other baselines on intrusion
detection and computer vision benchmarks. We report the arithmetic mean of each evaluation metric
with each experiment repeated five times independently.

MIR PAPA Training time (in sec.)

Datasets PR-AUC (A) PR-AUC(B) ROC-AUC PR-AUC (A) PR-AUC(B) ROC-AUC MIR PAPA Scalable efficiency

NSL-KDD 0.964 0.971 0.970 0.961 0.968 0.969 25.4 21.4 15.7%
CICIDS-2017 0.999 0.999 0.999 0.999 0.999 0.999 316.0 188.8 40.2%
CTU-13 1.000 1.000 0.999 0.999 0.999 0.999 375.5 330.8 11.9%
KDDCUP’99 1.000 0.929 0.999 1.000 0.920 0.999 457.0 395.0 13.5%
UNSW-NB15 0.999 0.999 0.999 0.999 0.999 0.999 499.4 350.6 29.7 %
AnoShift 0.944 0.926 0.934 0.947 0.927 0.934 1300.0 900.6 30.7%
CICIDS-2018 0.994 0.994 0.992 0.998 0.999 0.998 9040.0 5948.0 34.2%

CIFAR-100 0.663 0.659 0.663 0.673 0.647 0.672 115.2 76.7 33.4%
CIFAR-10 0.949 0.936 0.944 0.948 0.936 0.944 133.0 108.0 18.7%
CLEAR-10 0.953 0.933 0.942 0.943 0.927 0.932 262.9 175.4 33.2%
SVHN 0.979 0.972 0.976 0.981 0.974 0.978 296.0 208.0 29.7%
CLEAR-100 0.839 0.793 0.817 0.845 0.793 0.823 1706.0 1209.0 29.1%

PAPA: We present the results of the proposed PAPA algorithm and its comparison with the MIR
algorithm in Table 4. In this set of experiments, we use ECBRS as a memory population algorithm for
both MIR and PAPA algorithms. Results are presented in the non-decreasing order of their respective
training times. Based on performance metrics, our evaluation of the benchmarks demonstrates PAPA
as a replacement for a method like MIR, which uses numerous virtual SGD updates. From Table 4, it
is also interesting to see that our approach’s training time efficiency progresses with the dataset’s size.
Specifically, we note that PAPA achieves nearly 29%, 30%, 33%, 34%, and 40% scalable efficiency
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on the CLEAR-100, AnoShift, CIFAR-100, CICIDS-2018 and CICIDS-2017 datasets, respectively.
By scalable efficiency, we mean the total training time saved using the PAPA algorithm compared to
the MIR method.
Table 5: Performance comparison of the number of regular and virtual SGD operations required for
the MIR and proposed PAPA approach on benchmark datasets. Each experiment is repeated five
times independently.

MIR PAPA Savings

Datasets Vir.SGD ops Reg. SGD ops Vir. SGD ops Reg. SGD ops Vir. SGD ops Total SGD ops

NSL-KDD 1140 1578 210 1740 81.5% 28.2%
CICIDS-2017 9160 15784 550 10881 89.5% 54.17%
UNSW-NB15 11915 14638 600 12587 94.9% 50.3%
CTU-13 13235 18007 120 24658 99.0% 20.6%
KDDCUP’99 19555 17525 480 24450 97.5% 32.7%
AnoShift 48825 53187 1200 58421 97.5% 41.5%
CICIDS-2018 30590 41234 1200 36605 96.1% 47.3%

SVHN 3850 7143 360 6267 90.6% 39.7%
CIFAR-10 1935 2526 180 3028 90.6% 28.0%
CIFAR-100 1700 2436 135 2253 92.0% 42.2%
CLEAR-10 500 602 40 607 92.0% 41.2%
CLEAR-100 3250 3250 320 3848 90.1% 35.8%

Virtual SGD parameter updates: Here, we present the core of the proposed PAPA algorithm in
terms of the number of virtual stochastic gradient descent parameter updates. In Table 5, we present
the results in the non-decreasing order of the size of the datasets and make the following observations.
First, the number of virtual SGD operations in MIR increases with the size of the dataset. On the
contrary, the number of these operations is reduced with the benchmark size in our proposed method.
Second, the number of virtual SGD operations of the PAPA algorithm per benchmark is always fixed.
The fixed number of virtual SGD operations in the PAPA is due to using the MIR algorithm only for
the first task.
Ablation studies: We conduct various experiments as a part of ablation studies to validate the
robustness of the proposed approaches. These include the effect of gradient-based sample selection
instead of a random selection (refer to line 177) of the ECBRS performance, the effect of batch size
and γ on ECBRS performance, robustness to different task orders on the PAPA algorithm, the effect
of batch size and buffer memory size (M) on the PAPA algorithm. We present and discuss the results
in SM:A.10. Further, limitations of the proposed methods are discussed in SM:A.13.
Additional experiments: We also validate the proposed approaches on the standard unsupervised
anomaly detection (SMAP [60], SMD [61], and MSL [60]) benchmarks. Our findings on the
supervised dataset are equally valid in this new set of experiments (refer to SM:A.9).

4.2 Impact of task similarity on virtual SGD updates
All the preceding discussions of the PAPA algorithm focus on leveraging the slowly
varying parameter update process to approximate virtual SGD updates. Here, we ex-
plain the reason for the slowness in the virtual parameter updates using task similarity.
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Figure 4: Illustration of the relationship between task similarity and slowness in
the parameter update process of the MIR algorithm, using (a) optimal transport
dataset distance and (b) visualization of parameter value shift using the l1-norm
over the error vector.
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in the parameter (θi) value prior and after learning a particular task. We perform experiments to
compute OTDD and l1-norm of the error vector over the MNIST and CIFAR-10 datasets. We create
nine tasks in each of these experiments. We recall that a higher OTDD value signifies lower task
similarity. The OTDD value is zero for all the consecutive tasks in the MNIST dataset and therefore
ignored in this discussion.

In the second experiment, the tasks are formulated using the CIFAR-10 dataset. The third experiment
creates a sequence of two tasks from the MNIST and CIFAR-10 datasets. From Figure 4a, we observe
that the OTDD value is higher for the third experiment than the CIFAR-10 experiment. The reason for
this behavior is evident since the consecutive tasks in the third experiment learn from two dissimilar
datasets. We discover similar behavior in the error vector in which l1-norm over the error vector of
the third experiment exhibits a zig-zag pattern in Figure 4b. In other words, parameter values go back
and forth between two dissimilar tasks. Further, we provided detailed empirical analysis to showcase
that the modelling error distribution of the first task using the Gaussian mixture model is sufficient
and useful to approximate error distributions of the subsequent tasks. In other words, the occurrence
of two dissimilar tasks resulting in different error distributions that can’t be modelled by PAPA is
rare in the context of NID, as demonstrated in SM:A.12. To conclude, assuming overparameterized
models, parameter value shifts between the regular SGD and virtual SGD update are low, given the
sequence of similar tasks.

5 Conclusions and Future Work

In this work, we improved the performance of online memory replay-based CL approaches for
network intrusion detection while addressing class imbalance and scalability issues. Specifically, we
focused on two popular algorithms viz., CBRS and MIR. The CBRS algorithm is extended (that we
call ECBRS) using global information that helps it to maintain accurate class imbalance information.
We showed that ECBRS outperforms all the baselines, including CBRS, by maintaining higher
minority class samples in the buffer memory. Furthermore, ECBRS is also efficient in terms of the
training time incurred as compared to the baselines. We proposed a simple perturbation-assisted
parameter approximation (PAPA) method for virtual parameter updation in the MIR algorithm that
helps significantly reduce the number of SGD update operations. The efficacy and scalability of these
augmentation strategies have been demonstrated on standard network intrusion detection, computer
vision, and anomaly detection datasets. In summary, the proposed augmentations to online memory
replay-based CL approaches achieved improved performance using fewer computations and thereby
at a lower training cost.

As a part of future work, we plan to extend the supervised binary classification setting of the network
intrusion detection problem to a supervised multi-class classification problem. Furthermore, we
are interested in exploring the semi-supervised techniques for intrusion detection to understand the
challenges in the context of class imbalance and distribution shifts in conjunction with open-world
learning, explainability, and adversarial robustness settings.
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