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Abstract—Various real-time, latency-sensitive, and high-speed
mobile applications are evolving as 5G applications. These appli-
cations are realized using Multi-access Edge Computing (MEC)
and Network Function Virtualization (NFV) technologies in the
5G system. MEC platform, MEC service, and MEC applica-
tion are the main components of an MEC Framework. NFV
Orchestrator, Virtualized Infrastructure Manager (VIM), and
virtualization technologies such as Virtual Machines (VM) and
Containers are the main pillars of the NFV technology. In this
paper, we study the impact of the virtualization technologies
in the deployment of the MEC framework and its components
while. We also study the impact of virtualization technologies on
NFV and MEC KPIs such as onboarding time, instantiation time,
MEC service and application response times. The experiments
and its analysis show that containers perform better than VM to
instantiate/terminate MEC components in the NFV framework.
The observed MEC service KPIs show that the edge application’s
performance will be improved to meet the QoE of the applications
irrespective of the virtualization technology used. These results
can be used as a reference while deploying the MEC components
based on their granular functionalities.

Index Terms—NFV, MEC Framework, Virtualization Tech-
nologies, MANO, OpenStack

I. INTRODUCTION

In telecommunication, 5G is the upcoming generation of
mobile networks, providing enhanced capabilities in massive
device connectivity. The main features of 5G are higher data
rate, lower application latency, support for high mobility,
higher spectral efficiency, and massive user connections [1].
Due to these features, various real-time applications can be
deployed in the 5G network to serve a large number of users.
The emerging application trends in the current mobile tech-
nology are High Definition video streaming, time-critical real-
time communications in autonomous vehicles, Augmented Re-
ality/Virtual Reality applications, and video gaming [2]. These
applications require fast processing and low latency. Hence,
next-generation cellular networks require advancements in
latency, massive connectivity, local processing, scalability, and
access to time-critical services to meet infrastructure demands
and reduce back-haul congestion [16]. These real-time low
latency services can be deployed in a 5G network with the
help of the Multi-access Edge Computing (MEC) framework.
MEC extends the computing functionalities of cloud comput-
ing by deploying services near the users and improves the

Fig. (1) MEC Deployment in the NFV Framework.

Quality of Experience (QoE). European Telecommunications
Standards Institute (ETSI) provides the MEC Framework
guidelines and its deployment options in the 5G network [3].
According to the ETSI MEC Framework specifications, the
necessary components of a MEC Framework are MEC plat-
form, MEC service, and MEC applications [4]. The MEC plat-
form is responsible for handling the service registry, handling
DNS, and traffic rules of the MEC application’s data plane.

MEC services are the standard utilities required by the MEC
platform and applications. Examples of the MEC services are
Location service, Radio Network Information Service (RNIS),
and 5GCoreConnect service. These services can be used to
fetch information from the mobile network. Whereas MEC
applications are real-time and low-latency server applications
deployed at the proximity of users.

Network Function Virtualization (NFV) is used to deploy
the MEC components. The benefits of using NFV are scal-
ability, loose coupling, and distributed deployment of Vir-
tual Network Functions (VNF). ETSI standardizes the NFV
framework and also provides guidelines for MEC deployment
in the NFV framework mentioned in [5]. NFV Orchestra-
tor (NFVO), Virtual Network Function Manager (VNFM),
and Virtual Infrastructure Manager (VIM) are the functional978-1-7281-7299-6/20/$31.00 © 2020 IEEE



Fig. (2) Experimental Setup.

blocks of the NFV Management and Orchestration (MANO)
framework. The NFVO is the central repository, which keeps
records of VNF packages’ instances, Network Service (NS)
packages. The VNFM hosts MEC components and handles
the lifecycle of VNFs. These VNFs are deployed using vir-
tualization technologies such as Virtual Machines (VM) and
Docker containers. VIM provides and manages the physical
resources such as compute, storage, and network to deploy
VNFs. Using NFV MANO, applications can be deployed in
an ad-hoc and distributed manner. Fig. 1 shows the integration
of MEC components in the NFV framework.

There are several open-source implementations of NFVO,
such as ETSI OSM [6], and OpenBaton [7]. OpenStack [9],
and OpenVIM [10] are some of the open-source implementa-
tion of VIMs. VMs and Docker containers are the leading
virtualization technologies used to deploy VNFs. Whereas,
Docker Swarm and Kubernetes [12] are used to orchestrate
Docker containers. VMs are the primary component used in
the cloud computing paradigm for the deployment of VNFs.
As VMs come with their own Operating System (OS), it can
be installed on bare metal or OS with a hypervisor’s help.
Due to the presence of guest OS, the deployment time and
size of VMs is usually large. Docker containers are used as
an alternative to VMs. The Docker container images contain
only the libraries that are not part of the host OS, leading to
small in size, portable, and faster deployment than the VMs.
However, due to the presence of guest OS in VMs, it provides
full isolation between running processes and secure processes
compared to Docker containers.

In this paper, we aim to analyze the impact of virtualization
technologies on the deployment of the MEC framework. We

deploy and analyze the performance of MEC components on
two popular VIMs, i.e., OpenStack and Vim-emu [11]. The rest
of the paper is organized as follows, Section II describes the
work done in performance evaluation of NFV, 5G, and MEC.
Section III provides the details about the experimental setup,
and Section IV describes the various experiments, results, and
its detailed analysis. Section V concludes the paper with the
future scope of this work.

II. RELATED WORK

A. 5G and MEC architecture

ETSI defined a reference architecture for MEC [3], which
details the interaction between the MEC platform and the 5G
network. It also describes various MEC deployment scenarios.
[13] summarizes the various MEC deployment options in both
4G and 5G mobile networks, with the advancements in 5G.
From the performance viewpoint, ETSI specifies MEC metrics
and guidelines for MEC applications [14]. It covers signifi-
cance and methods to collect values of various parameters such
as Latency, Throughput, Energy efficiency, Resource footprint,
and Quality of Service. In [16], the authors summarize the
quantitative comparison between VMs and containers, the
evolution of MEC, MEC deployment options, and comparison
between different NFVOs.

B. NFV Components

The authors in [17] focused on the performance com-
parison of the NFVOs, OSM, and ONAP with functional
and operational KPIs. The functional KPIs considered are
the resource requirement to deploy the Orchestrator and the
number of VIMs supported while the operational KPIs are the
on-boarding time and deployment time. The authors of [18]



Fig. (3) End-to-end service establishment.

covered the comparison of nine different NFVOs based on
the available resource orchestration options and components
in the NFV framework. The authors compared OpenStack
and OpenVIM using CloudStack benchmarking tool in [19].
Performance metrics considered are VIM architecture, VIM
resource requirements, VM image creation time, VM pro-
visioning time based on VM size. The detailed comparison
of virtualization technologies such as VM, container, and
unikernel is covered in [20]. The authors studied various
performance metrics such as request serving rate, average
processing delay, CPU utilization, and memory utilization by
varying number of requests and request size.

C. MEC application deployment in NFV Framework

The authors in [21] focused on CPU-intensive VNF de-
ployment, such as a video caching application in the NFV
framework. OpenBaton is used as the NFVO, and GPU based
VNF deployed to evaluate its performance. Different aspects
and issues in the deployment of edge robotics applications are
covered in [23]. The authors also discussed the communication
issues, workflow issues, and conceptual issues that are useful
for validating any use-case deployment in an NFV framework.
Deployment of high-quality 4K video streaming applications
supporting low-latency in the MANO architecture is described
in [22]. NFV-based 4K streaming MEC application and fuzzy
moving DASH algorithms are compared for the latency and
video segment arrival rates in [22].

In the literature, most work is focused on the general
architecture and performance comparison between different
NFV components, deployment of MEC applications in the
NFV framework. To the best of our knowledge, there is not
much work on deploying various MEC components in the
NFV framework along with a 5G core network, which plays a
vital role in deploying any real-time low-latency applications.
Because the control plane communication is performed via
these components, the placement and selection of virtualiza-
tion technology are essential in the MEC framework deploy-
ment. Our primary motivation is to identify the research gaps
in the deployment of MEC components in an NFV framework,
which is done by using a real-time 5G experimental system,
as described in the following sections.

III. DESCRIPTION OF EXPERIMENTAL SETUP

To study the interaction between 5G core entities and MEC
components, we developed a 3GPP compliant proprietary
implementation of 5GC as shown in Fig. 2. The 5G CN
functions are developed using an HTTP/2 based Service-based
architecture (SBA) and deployed as a Docker container. Also,
to study virtualization technologies’ behavior, we deployed the
MEC components in the NFV framework using Openstack and
vim-emu [11] as a VIM. Application Function (AF), which
plays an intermediary role in the communication between 5G
core and MEC Platform, is also developed using HTTP/2
libraries. AF also acts as a registered service in the MEC
Framework. The MEC platform is developed in HTTP/1.1



using the OpenAPI interface descriptions provided by ETSI
Forge [24]. We used real-time DASH based video caching
application as our MEC application [25]. The application is
divided into two modules, i.e., edge and cloud. The edge
module is present at the MEC host, and the cloud module is
hosted on the remote central server. Whenever a user requests
for video, the request goes to the edge module. If the requested
video is available, it returns the video frames, but the edge
module sends the request to the cloud server if it is not
available. Video frames are then delivered to the user while
simultaneously being cached into the edge module’s storage.

We have used ETSI OSM (Rel. 6) as our Mobile Edge
Orchestrator Orchestrator (MEAO) and MEC Platform Man-
ager (MEPM), which is compliant with the ETSI NFV guide-
lines. We have considered two VIMs, OpenStack ’Rocky’
version and Vim-emu. OpenStack is used to deploy VNFs
with VMs, and Vim-emu is used to deploy VNFs in the form
of Containers. Docker swarm is used to connect MEC and
5G components. Vim-emu is chosen over Kubernetes for the
deployment of Containerized Network Functions (CNF). At
the time of this work, the integration of Kubernetes with OSM
was new and had not matured. The system specifications used
for the deployment of OpenStack and OSM are mentioned in
table I.

TABLE (I) System Requirements.

OSM OpenStack

CPU 16 Cores 16 Cores
Memory 16 GB 16 GB
Storage 215 GB 215 GB

The call flow for end-to-end service establishment with the
MEC application and 5G is shown in Fig. 3. Whenever the
MEAO instantiates a MEC application, it registers in the MEC
platforms service registry. The application’s traffic routing
details are then sent to the AF, which then forwards these
details to the PCF. Upon receiving the routing details from
the AF, PCF generates the corresponding PCC rules and sends
them to the SMF, which adds these new routing details in the
corresponding UPF. During UE session establishment with the
5G core network, SMF forwards the UPF details to UE. Then
onwards, UE can directly access the services from the MEC
application.

IV. EXPERIMENTAL EVALUATION OF THE NFV
FUNCTIONALITIES IN A MEC FRAMEWORK

This section evaluates the various KPIs of NFV and MEC,
such as instantiation/termination time and service response
time. It analyzes the impact of different virtualization tech-
nologies on the deployment of MEC components.

A. Application/VNF Onboarding Procedure
In the MEC Framework, the functional entities involved in

the application package onboarding are the NFV Orchestrator
and the VIM. The onboarding process is independent of the
selection of VIM. Onboarding of any component of the MEC
framework has the following steps:

Fig. (4) Example VNF Descriptor.

• Creation of VIM accounts for OpenStack and vim-emu.
• Creation of MEC platform images suitable to the VIM,

i.e., Docker image for Vim-emu and QCOW2 image for
OpenStack, respectively, and upload it on VIMs.

• Creation of Virtual Network Function Descriptor
(VNFDs) and NSDs to specify the image name, resource
requirement, networking, and initial configuration.

• Onboarding of the VNF and NS packages in OSM. This
step does not require to specify VIM details.

• Selection of appropriate VIM account at the time of NS
instantiation at the NFV Orchestrator.

An example of VNFD to deploy the MEC platform in our
experimental setup is shown in Fig. 4.

B. Network Service Deployment Time

To analyze the performance impact of virtualization technol-
ogy on NFV management entities during service deployment,
we consider the following metrics,

• The time required to instantiate or terminate the MEC
Platform from NFV Orchestrator.

• The time required to instantiate or terminate the MEC
application from NFV Orchestrator.

We created docker images and VM (QCOW2) images of the
MEC platform, AF, and MEC application to realize it. The
Docker image size for the MEC platform and AF is 1.2GB, and
the MEC application is 700MB. The measurements were taken
ten times on average with a varying load on the VIM and the
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(a) MEC Platform Instantiation.
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(b) MEC Platform Termination.
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(c) MEC Application Instantiation.
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(d) MEC Application Termination.

Fig. (5) Impact of Virtualization Technologies on MANO.

NFV Orchestrator. To make a fair comparison between VMs
and Containers, the VM image’s size was also considered.
The details of different flavors used in the experiment are
mentioned in Table II. MEC platform and AF are deployed as

TABLE (II) VM Flavors.

ds512M ds1G ds2G

CPU 1 1 2
Memory 512 MB 1 GB 2 GB
Storage 5 GB 10 GB 10 GB

a single NS, Fig. 5.(a) shows the time required to instantiate
the MEC platform and AF and register the AF service into the
platform’s service registry. Fig. 5.(b) shows the time required
to de-register the AF service, terminate and cleanup of the
MEC platform, and AF. Similarly, Fig. 5.(c) and Fig. 5.(d)
shows the time required to instantiate and terminate the MEC
application’s NS.

It can be seen from Fig. 5.(a) that time required to deploy the
MEC platform on containers is less when compared to VMs.
Furthermore, we can also see that most of the values are in
a small range compared to VMs. Similarly, Fig. 5.(b) shows
the time required for terminating the NS is less for containers
than VMs. Fig. 5.(c) and Fig. 5.(d) show a similar trend for the
deployment of MEC applications. However, there is a higher
variation in the measured values than the MEC platform and
AF. It can also be noted that the time required in all the cases
is affected by the VM flavor, i.e., the larger the VM image

size, the more time is required to instantiate/terminate the NS.
From the results, it can be inferred that the Containers

perform better than the VMs. Hence, it makes them a perfect
choice to be used as Virtualization technology in the quick
deployment of the MEC framework. However, Containers
lack complete isolation between processes and, thus, the
security breach makes them unfavorable. Alternatively, we can
use multiple Virtualization technologies to realize the MEC
framework, i.e., deploy the MEC platform on VMs and use
Containers for MEC applications.

C. Impact on MEC Service Response Time

In this section, we analyze the impact of virtualization
technologies on the MEC Platform services. We only analyze
the mandatory services required for service management and
MEC application support, i.e., service registry, traffic rules,
and DNS rules. Table III shows the response time for these
services when deployed on two different VIMs, i.e., Vim-
emu and OpenStack. From the table, we observe that the
response time for both VIMs does not vary significantly.
Because of the use of the HTTP request-response model, i.e.,
the implementation of these services is abstracted from the Vir-
tualization technology. Also, these services are not compute-
intensive to any virtualization platforms. So irrespective of the
underlying virtualization technology, MEC services have the
same performance.



TABLE (III) Service Response Time.

Service Method Vim-emu OpenStack

Service Registry

Get 0.122s 0.129s
Post 0.113s 0.119
Put 0.116s 0.124s

Delete 0.127s 0.130s

Traffic Rules Get 0.123s 0.128s
Put 0.150s 0.159s

DNS Rules Get 0.114s 0.127s
Put 0.199s 0.204s

D. MEC Application Response Time

Using the experimental setup, we measured the application
response time for the video caching application based on video
availability at the edge. The video application’s application
response time is measured as the time to get the first chunk of
the video by the DASH-supported browser. Each chunk con-
tains a video frame for 2 seconds of playtime. We conducted
this experiment using vim-emu as a VIM. If the video is not
available at the edge site, the average response time as about
215 milliseconds as the video needs to fetch from the remote
server. If video is available at the edge (cached at the MEC),
the response time is around 86 milliseconds. This reduction
in time duration would benefit the application significantly in
terms of video QoE.

V. CONCLUSION

Support for MEC in 5G is one of the main features of 5G to
meet the requirements of various services envisioned for 5G
by deploying the applications near the end user. NFV helps
the management and orchestration of the MEC applications in
an efficient way to deploy the MEC service/application as a
VNF. These VNFs are realized through various virtualization
technologies, such as VM and containers. In this paper, we
have developed a MEC framework integrated with a 5G core as
a testbed system to study the MEC components’ performance
with different virtualization technologies. MEC platform and
MEC application instantiation require between 21 and 93 sec-
onds and between 38 and 120 seconds, respectively, in both the
virtualization technologies. To terminate the network services
of MEC platform and application requires between 13 to 65
seconds and between 17 and 59 seconds. The time required
to process the MEC platform’s services varies between 0.113
and 0.204 seconds. The results show that virtualization tech-
nologies have a significant impact on the service deployment
in the NFV framework. However, Containers perform better
than the VMs in terms of instantiation time and image size.
As per features of each virtualization technologies, and use
case of deployed VNFs, mapping differs. Onboarding time
and service response time are independent of virtualization
technologies. We plan to extend this work to study the impact
of virtualization technologies on the deployment of compute-
sensitive MEC applications.
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