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Abstract—While the 5G standards have been evolving contin-
uously, researchers aim for the resilience and sustainability of
5G systems for building cognizant and autonomous Beyond 5G
(B5G) and 6G networks. This is quite challenging in the Service
Based Architecture of distributed 5G Core (5GC) as multiple
Network Functions (NFs) are involved to help serve the various
User Service Requests (USRs) arriving in the control plane. In
this regard, the continuous monitoring of the availability and
performance of individual NFs in a Closed Loop Automation
(CLA) is a need of hour to keep up the robust and resilient
functioning of the distributed SGC overall. Any unforeseen
situations like the sudden failure, overload, or congestion of the
NFs of the SGC can drop even the critical USRs unnecessarily.
This paper proposes the proactive monitoring of the NFs of
the 5GC in the control plane and utilizes it to intelligently
schedule and serve the frequently arriving USRs and prioritize
the mission-critical slice service requests. Specifically, the Ford-
Fulkerson algorithm popularly known as the Max-Flow problem
solver is leveraged to proactively assess the NFs’ performance and
availability and use it effectively to serve critical service requests
arriving during unexpected situations of failure and overloads.
Our experiments based on the 3GPP-compliant 5G testbed show
that, with the proposed solution, the native 5GC can serve 20%
more predominant USRs, and the slice-supportive SGC can serve
33% more mMTC slice USRs, and 47 % more uRLLC slice USRs
while handling the worst case of peak traffic for different services.

I. INTRODUCTION

Current 5G systems are capable of providing a wide range of
services to their end users by adopting network slicing on top
of Network Function Virtualization (NFV) and Software De-
fined Networking (SDN) technologies. With control and user
plane separation, the 5G Core (5GC) is defined through a Ser-
vice Based Architecture by 3GPP [1]. Specifically, the control
plane here is distributed with various Network Functions (NFs)
being virtualized and made to run on either compute-intensive
Virtual Network Functions (VNFs) or container-based Cloud-
native Network Functions (CNFs) being hosted on remote
or edge clouds. Here, different NFs, mainly, the Access and
mobility Management Function (AMF), Authentication and
Security Function (AuSF), Unified Data Management (UDM),
Network Repository Function (NRF), and Session Manage-
ment Function (SMF) interact on the Service Based Interface
(SBI) (see Fig. 1a) to serve a variety of User Service Requests
(USRs) arriving in the control plane.

But, slicing is mainly observed on the data (or the user)
plane of 5G to provide a variety of services to its users

like enhanced Mobile Broad Band (eMBB), ultra Reliable
Low-Latency Communications (uURLLC), massive Internet of
Things (mloT), Vehicle to Everything (V2X), and High-
performance Machine Type Communications (HMTC) (see
Fig. 1b). So, in this regard, the convergence of virtualization
and slicing on 5G has been very effective in saving costs
for Mobile Network Operators (MNOs) to provide a variety
of services on a common and shared physical infrastructure.
However, it poses a set of challenges in providing a robust
and resilient service.

In this context, this paper proposes a proactive resource
utilization mechanism to schedule and serve the prominent
and critical USRs arriving during unexpected and unforeseen
situations of the 5SGC control plane. Specifically, we leverage
the Ford-Fulkerson Algorithm (popularly known as Max-Flow
problem solver) [2] to realize the current situation instantly,
by proactively peeking into the total available resources of
the distributed SGC control plane. We then use its output
to effectively schedule the most needed and critical service
requests arriving at the SGC control plane, to ensure resilient
and sustainable service to the best of its (SGC control plane)
ability. Overall, using the proposed solution, a shared and
slice-supportive control plane of 5SGC, not only be effective
in serving the prominent and frequently arriving USRs but it
can prioritize the mission-critical service requests, which may
require immediate data service on the corresponding slice. To
summarize, the key contributions of this paper are

o Identifying the need for proactive and continuous as-
sessment of the distributed 5GC control plane’s total
availability and capacity.

o System model with Ford-Fulkerson (Max-Flow) [2] al-
gorithm to facilitate resilience and sustenance in terms
of dynamic scheduling and serving the predominant and
critical slice service USRs.

o Evaluation of the proposed solution on the 3GPP-
compliant 5GC framework to illustrate the improved
resilience and sustenance in serving the mission-critical
and predominant USRs.

The rest of the paper is organized as follows. Starting with
motivation and related work in Section II, we propose the
system model with the Ford-Fulkerson algorithm in Section III
to assess the sudden unforeseen situations and the current total
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Fig. 1: View of SBA-based control plane with native SGC in a) and slice-supportive SGC in b).

capacity of 5GC and thereafter leverage its output efficiently
to schedule and serve the critical USRs arriving during such
situations. Further, in Section IV, we detail the implemented
experimental setup of the proposed work in a 5G system
followed by details on data collection and analysis techniques
used to evaluate the proposed algorithm’s effectiveness in
efficient resource utilization for serving the needed USRs, in
both native and slice-supportive 5SGC. Finally, in Section V
we conclude our paper with the future work. Note that, in the
rest of the paper, the term 5GC refers to the control plane of
5GC, unless mentioned specifically.

II. MOTIVATION AND RELATED WORK

The advent of a variety of devices connecting to 5G
has increased the network capacity and service demands,
necessitating efficient resource allocation strategies for 5G
system deployments. However, managing network resources
and meeting the diverse service requirements of the 5GC
present complex challenges. Our work is inspired by two such
important challenges in the 5GC, which we notice when a
slice-supportive 5GC aims to provide a variety of services to
a variety of users.

1) First, the rapidly growing control plane traffic (USRs)
arriving at the 5GC control plane urges the MNOs
to evaluate different proactive mechanisms to make it
(the 5GC) cognizant, robust, scalable, yet resilient and
sustainable towards various unexpected and unforeseen
situations like the sudden failure of NFs, and the sudden
arrival of heavy traffic [3].

2) Second, 3GPP [4] defines different procedures for the 5SG
users to successfully access the data service. Specifically,
the 5G users need to first register to the SGC (via the
Radio Access Network (RAN)) and establish a Packet
Data Unit (PDU) session on the control plane before
accessing the required service on the user plane. As
different users and devices keep arriving at the SGC, the
MNO must not only ensure that all the NFs of 5GC
are available but also that they should be capable of
handling different service requests coming from various
users [3, 5].

In this regard, our work aims to provide a resilient and highly
available service on the control plane with sustainability even
during sudden failures of NF(s) and the sudden arrival of heavy
traffic at the 5GC.

The 5G systems have been on continuous research to
improve their scalability, resilience, and high availability of
service to their end users. In this regard, several works have
leveraged Artificial Intelligence (Al)-based proactive meth-
ods [6, 7, 8] . Authors in [6], employ Recurrent Neural
Networks (RNN) to perform load forecasting and use its output
for proactive scaling of the SGC at AMF. It ensures efficient
resource allocation, improved latency, and optimal utilization
of the AMF functions based on the forecasted traffic load.
In a similar context, authors in [7], propose a deep learning-
based resource usage forecasting approach that provides useful
insights for decision-making in a CNF scaling environment.
Recently, authors in [9] have also demonstrated the per slice-
based AMF instance deployment to deal with resilience issues
on the control plane. All these techniques are very effective
when the forecasted traffic or the load for the next time cycle
is quite accurate, but the sudden arrival of heavy USRs and
failure of NFs is still a challenge, where the NFs may be
incapable of handling emergencies [10] like natural disaster
management or mission-critical USRs.

In close relation to our work, authors in [5], have similar
intentions of catering to reliability and high availability of the
service during unexpected situations on the SGC control plane.
Here [5], the authors propose a greedy approach of scheduling
the frequent USRs on the NF instances that are least loaded
and running all the rarely arriving USRs on NF instances that
are loaded above the average system load. This scheduling
approach is very effective per NF-basis. However, the work
does not consider the inter-NF dependencies in the distributed
5GC. In this context, work in [11] demonstrates the inter-NF
dependencies that could potentially become the bottleneck for
resilient service for mission-critical applications. To overcome
this problem, the same authors have proposed a Per Proce-
dure 5G system (PP5GS) [12] where Per-Procedure NFs are
developed in 5GC, such as an NF for serving UE registration,
another NF for serving PDU session establishment, and so
on. This is quite good for private 5SG deployments. However, a



3GPP defined 5GC [1] is completely distributed by nature with
multiple NFs involved each having their role to play. Hence,
in this regard, our work being 3GPP-compliant is not only
unique in handling the unexpected situations of the sudden
arrival of emergency and heavy USRs and failure(s) of NFs
but also is an add-on solution to improve resilience on the
existing works [5, 12].
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Fig. 2: Proposed CLA framework with SGC SBA and Max-
Flow problem solver inside NSMF.

III. PROPOSED SYSTEM MODEL

We aim to build a highly available and resilient SGC that
can continue to serve the USRs to the best of its ability even
during sudden unforeseen situations. In this regard, as the
SBA of 5GC is distributed by nature consisting of various
NFs, it is important to monitor their health and capacity
continuously so that any adjustments in resource allocation and
reconfiguration can be done proactively. Hence, it requires a
Closed Loop Automation (CLA)-based framework. Therefore,
in the proposed work, we design two fundamental building
blocks working in CLA with three important phases. These
building blocks are

1) 5GC with a set of NFs that serve different arriving USRs
(see Section I and Section II for description).

2) Network Slice Management Function (NSMF) [13]:
NSMF is a slice management entity responsible for con-
figuring, deploying, monitoring, and re-configuring the
slices as per the orchestration needs in collaboration with
the Management and Orchestration (MANO) entity. In
this work, we leverage it to monitor, reconfigure the SGC,
and aid in resource control and reallocation to eventually
help in slice service prioritization in terms of serving the
USRs.

Fig 2, depicts the working of different blocks mentioned
above. We now elaborate on the functionalities of three im-
portant phases in which these building blocks work in CLA
to aid in building a resilient SGC overall.

A. Serving of USRs and 5GC Monitoring

As detailed in Section I and Section II, NFs of 5GC serve
different types of USRs, that allow the 5G users to establish
the PDU session(s) for availing the service from the data plane.
Note that, to address the scalability needs, every NF here may

consist of a Load Balancer (LB) to schedule the USRs and
multiple instances of NF each of which actually serves the
USRs [5, 9]. Nevertheless, we consider every NF as a logically
centralized entity, as this is sufficient to understand our work.
Hence, in Fig. 2, we show the scalable view for AMF only,
and other NFs are shown as a centralized entity. However, all
these NFs of 5GC (including AMF) report their overall health
information to the NSMF (see Fig. 2). The health information
here includes their availability and capacity in terms of total
serving instances.

B. Resource Allocation and Control of 5GC

As shown in Fig. 2, resource allocation and control are the
functionality inside NSMF with the communication between
the respective module and the Max-Flow problem solver mod-
ule. We propose to run the Max-flow problem solver module
using the Ford-Fulkerson algorithm [2], popularly known as
the max-flow problem solver.

1) Overview of Ford-Fulkerson Algorithm: The Ford-
Fulkerson algorithm is a fundamental method in network flow
optimization that solves the problem of estimating the maxi-
mum flow through a network with specified edge capacities.
The primary goal is to maximize the total flow from a source
node to a sink node while keeping the edge capacities in mind.
In essence, the Ford-Fulkerson algorithm seeks the best way
to distribute a flow, such as data packets, through a network
of connected nodes and edges while obeying the available
edge capacity. It works in repeated steps, augmenting the flow
along paths from the source to the sink incrementally. At each
step, it finds a path in the network’s residual graph, which
is a modified version of the original graph that accounts for
the previously admitted flow. Depth First Search (DFS) or
Breadth First Search (BFS) is commonly used to find this
path. The algorithm’s ability to optimize resource distribution
while adhering to capacity restrictions makes it a useful tool
for tackling a wide range of optimization problems like flow
optimization in transportation systems and traffic routing. To
justify the usage of this algorithm in this work, we briefly
explain the motivational factors next.

2) Motivation for Ford-Fulkerson (Max-Flow problem
solver): The rationale behind choosing the Ford-Fulkerson
algorithm over other alternatives, such as Dynamic Program-
ming (DP), for this study, is rooted in several key factors that
contribute to its superior performance in terms of complex-
ity, scalability, and suitability for SGC’s resource allocation
challenges. The Ford-Fulkerson algorithm’s time complexity
is O(V - E?), where E represents the number of edges
in the network and V is the number of nodes. The above
implementation of the Ford-Fulkerson Algorithm is called the
Edmonds-Karp Algorithm which has the the proof that the
algorithm always terminates and yields maximum flow [2].
While this complexity can be relatively high in worst-case
scenarios, its scalability can be efficiently managed through
heuristics, optimizations, and dynamic adjustments. This char-
acteristic aligns well with the dynamic nature of SGC where
network conditions and users’ demands can change rapidly.



The algorithm’s adaptability to varying capacities and dynamic
adjustments make it well-suited for real-time decision-making
in resource allocation. In contrast, the DP approach [2] often
involves higher time and space complexities, particularly when
solving optimization problems with multiple variables and
constraints. The DP-based solutions may become computa-
tionally expensive as the problem scales, leading to potential
scalability issues in large-scale 5G networks with numerous
instances for different NFs and varying capacities. Hence, we
choose the Ford-Fulkerson algorithm to address the resilience
needs in a distributed SGC during the unexpected failures and
overload of different NFs, while handling a variety of different
USRs. Note that, henceforth, the term max-flow in the rest of
the sections represents the Ford-Fulkerson algorithm, unless
mentioned specifically.
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Fig. 3: Ford-Fulkerson (Max-Flow problem solver) represen-
tation for control plane functioning of SGC SBA.

3) Max-flow for Resource Allocation and Control in 5GC:
For the execution of the max-flow problem solver, we first
represent the complete SGC (having required NFs), with a
directed graph (G = (V, E)) shown in Fig. 3, having a set of
vertices and edges between designated source and sink nodes.
Here, vertices represent the different NFs involved in handling
different USRs, like AMF, AuSF, SMF, UDM, Location Man-
agement Function (LMF), Application Function (AF), and so
on. An edge between two NFs represents the communication
dependency between the respective NFs for processing a USR.
For example, UE registration (a USR) is processed by AMF,
AuSF, and UDM, and hence, there is an edge between AMF
and AuSF and an edge between AuSF and UDM. Similarly,
there is an edge between AMF and SMF, and an edge between
SMF and UPF for processing the PDU session establishment
(another USR). Note that, here, AMF is designated for both
the source and sink nodes in the representation (see Fig. 3).
This is because, as per 3GPP [1], the AMF is the only point
of contact for all control plane communications towards the
user (User Equipment (UE)) [1]) and RAN, and hence, both
the entry and exit points in the graph. It is to be noted that
for the max-flow problem solver, the graph is formed with
the required NFs which are responsible for completing the
respective control plane functioning of the desired data plane
services. For example, in Fig 3, AMF, AuSF, UDM, SMEF,
UPF, LMF, and AF are shown as these NFs are required to

Algorithm 1: Max-flow problem solver for resource
monitoring, allocation, and service prioritization

Input : graph, source, sink
1 Global variables: maxFlow, numUsersNotServed
2 interval = 0 (seconds);
3 while true do
4 maxFlow = FORD_FULKERSON(graph, 0, n);

5 if numUsersNotServed > 0 then
6 min = arr[0];

7 ind = 0;

8 for i < 1 to n do

9 if arr[i] < min then

10 min = arr[i];

1 L ind = i;

12 arr[ind] = min + 1;

13 update(graph);

14 else

15 if numUsersNotServed == 0 then
16 max = arr[0];

17 ind = 0;

18 for i + 1 to n do

19 if max < arr[i] then
20 max = arrl[i];

21 L ind = i;

22 arr[ind] = max - 1;

23 update(graph);

24 sleep interval;

complete the control plane processing for UE (the user) [14]
to avail the location services on the control plane and further
in the data plane too.

The working of the max-flow problem solver for resource
monitoring, allocation, and control is shown in Algorithm 1.
Here, the solver is invoked at regular intervals with a re-
quired/desired periodicity, which is set by the variable interval.
It takes into consideration the scale-in and scale-out time
requirements. The solver updates the capacity of the graph
and stores the value in the variable maxFlow. Its purpose
is to determine the maximum flow across the SGC (as per
the formulated graph, see Fig 3), based on the capacities
of different NFs involved in processing the respective USRs
and the prevailing demand. It also keeps track of the total
number of USRs drooped in the variable numUsersNotServed.
If the number of dropped USRs is greater than 0, it checks the
bottleneck node/NF and triggers scale-out (see lines [5-13]).
Similarly, if no USRs are being dropped, the solver finds the
node/NF that has excess resources allotted and triggers scale-
in for that (see lines [15-23]). The final available capacity and
the node that needs to be scaled in or out is then output to
the resource allocation and control module, which triggers the
scale-out or scale-in.



C. Service Prioritization with Resource Awareness

Service prioritization with resource awareness is the final
phase of CLA (see Fig. 2) in the proposed work. In this phase,
first, the output from the max-flow problem solver is given
to the resource allocation and control module inside NSMF.
Using the output, this module computes the maximum number
of USRs that could be served and notifies the AMF LB, so that
the AMF LB can make decisions as to which USRs shall be
prioritized (AMF is the entry point for all the uplink control
plane communication to serve different USRs).

1) Service Prioritization for Frequently arriving USRs:
From works in [5] and [15], we observe that significant
portion of USRs is made up of ‘N2 release’ and ‘Service
request’ or the ‘PDU session establishment’ procedures
arriving at the native SGC (see Fig. 1a) versus the user
registration and handover procedures [4]. Hence, we too
consider these significant portions of USRs, as frequent
USRs and the rest as rare USRs. So, in situations of
sudden failure of one or more NFs’ serving instances
or overloaded situations, i.e., when enough NF instances
are not available or not capable of serving all the arriving
USRs, using the output given by the resource alloca-
tion and control module (see Section III-B), the AMF
LB prioritizes the frequent USRs against the rare ones,
thereby, at least the best number of frequent USRs can be
served successfully from the available serving instances
of corresponding NF(s) in the maximum flow path.

2) Slice Service Prioritization: As shown in Fig. 1b, an
MNO deploys a slice-supportive SGC when there are
one or more slices (like eMBB, uRLLC, mloT, and
so on) available to serve in the data plane. But, the
control plane here is common and shared (see Fig. 1b).
So, based on the deployment need, the SGC here shall
be capable of serving different USRs arriving in the
control plane asking for different slice services. How-
ever, depending on the slice type and the time of the
day, the amount of these USRs may vary in number.
For example, mloT-related USRs typically peak during
working hours of the day [16, 17], eMBB USRs peak
during night hours [17, 18], and uRLLC USRs can arrive
on an emergency basis [17, 19] (like e-health, remote
surgery, and ambulance services). So, using the output
from the resource allocation and control module (see
Section III-B), the AMF LB prioritizes the USRs of slice-
type which requires attention or has peak traffic against
the other slice types, thereby, at least the emergency
slice service requests can be served successfully to the
best possible level from the available serving instances
of corresponding NF(s) in the maximum flow path.

Overall, if the USRs for the prioritized service or the slice
are dropped, the proposed scheme (see Algorithm 1) identifies
the bottleneck NF. In response, a new serving instance of NF
is dynamically introduced (scale-out) to cater to the increased
demand. Conversely, when all USRs are effectively processed
without any drops and all service demands are satisfactorily

met, instances are dynamically removed (scale-in) from NFs
that have an excess number of these instances. Hence, this
dynamic scaling process ensures optimal resource utilization
while operating smoothly even in the presence of failures, thus
maintaining a responsive and resilient environment.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

To evaluate network resilience, first, we set up the testbed
environment as per the framework shown in Fig. 2. Here, we
capture the ground truth capacity of serving the USRs from the
in-house built 3GPP-compliant 5GC testbed that is leveraged
in our previous works [5, 9]. This testbed is built as a C++
library with HTTP/2 leveraged for service-based interactions
among the control plane NFs of the 5GC. Several of these
NFs are developed, including the AMF, AuSF, UDM, NRE,
SMEF, NSSF, and LMF on the control plane as necessary. The
RAN+UE emulator is also developed as part of this testbed. It
generates the USRs in the form of Non Access Stratum (NAS)
messages [20] towards the AMF (see Fig. 2). Note that the
radio side time duration is not considered here for end-to-end
time measurement, as the RAN+UE emulator does not have
the radio stack.

TABLE I: Test setup parameters for performance evaluation.

Parameter Value
Number of USRs Real dataset from [17]
with a  maximum  of

117 USRs/second. See
Section IV-B) for a detailed
description of the dataset.

25 USRs/second (see descrip-
tion in Section IV-A).
Uniform distribution  with
random numbers between 80
to 100 USRs/second.

5 seconds

Processing capacity per NF instance

Variation in the capacity of processing
the USRs due to failure of different
NFs’ instances.

Periodicity of monitoring the NFs and
max-flow problem solver invocation

For USRs, we mainly considered UE registration and
PDU session establishment procedures, as this is sufficient
to evaluate our proposed solution. During the testing, the
UE registration consumed more time than the PDU session
establishment. i.e., the time taken to complete a single UE
registration procedure is ‘40 ms’ and the PDU procedure is
35 ms’. Therefore, using the ‘40 ms’ value, we considered the
ground truth capacity of processing 25 USRs per second for
the evaluation of the proposed work. Accordingly, we set the
initial number of serving instances for every NF to 4 resulting
in a total capacity of 100 requests per second (25 req/sec per
instance). Other parameters considered for testing are tabulated
in Table 1.

B. Data Set for User Service Requests

To evaluate the end-to-end resilience benefit from our pro-
posed work, we used the real dataset [17] captured from Milan
city, the Big Data Challenge organized by Telecom Italia. The
dataset has various Call Detail Records (CDRs) collected in
intervals of 10 minutes for two months. So, similar to the
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works in [6], we consider that at least 10% of the traffic is
control plane traffic (USRs) and use it for our testing.

As described in Section III-B, the 5GC in this paper is
capable of working both in native mode (i.e., without slice-
support) and slice-supportive mode. Hence, for evaluation, we
set up the experimental testbed and captured the resilience
metrics individually for native mode and slice-supportive
mode. Additionally, to establish a baseline for comparison with
the proposed CLA-based max-flow scheme, we implemented a
scheme without it. Unlike the proposed scheme, in the baseline
scheme, the USRs are randomly processed, by neither giving
priority to frequent USRs in the native core nor to the specific
slice USRs in the slice-supportive core. The rest of the setup
parameters are the same as that used for the proposed scheme.
Note that, for consistency, we fail the same number of NF
instances in both the methods (the proposed max-flow problem
solver and the one without it) used for comparison.

C. Resilience of Native 5GC with Predominant Requests Pri-
oritization:

As per [3] and [21], to measure the resilience of 5GC
in this work, we capture the number of impacted USRs

during the sudden failures of different NF(s) of 5GC. For
testing this scenario of predominant requests (frequent USRs)
prioritization, we consider the USRs from the dataset to consist
of both frequent USRs and rare USRs, with 82% (like ‘N2
release’ and ‘Service Request’) for frequent and the rest for
the rare USRs like ‘UE Registration’ and ‘Handover’ (see
Section III-C for an explanation of this). This exact number
of 82% is taken from another real dataset [22] of bike-sharing
systems.

In Fig. 4a, we observe a significant difference in the total
number of dropped frequent USRs depending on whether
the proposed max-flow problem solver was employed to get
to know the current situation of 5GC. When the max-flow
problem solver was not used, the total number of such dropped
frequent USRs was observed to be higher. Accordingly, Fig. 4b
illustrates this difference by presenting the percentage of
dropped requests in both schemes. These findings highlight
the importance of leveraging the max-flow problem solver to
improve the handling of frequent USRs which are predominant
in nature requiring more attention and thereby reducing the
number of such dropped requests. Fig. 5 shows the Cumulative
Distribution Function (CDF) of the total number of dropped
frequent USRs in the proposed max-flow-based scheme against
the scheme without using it. We can observe that the proposed
scheme shows a higher probability of dropping less frequent
USRs than the one without it.

D. Resilience of Slice-supportive SGC with Critical-service
Prioritization

In the slice-supportive setup, we first analyze the dataset de-
scribed in Section IV-B, by taking into account user behaviors
and demands during business hours and night hours. During
the night hours (12 pm to 6 am), there is an increased alloca-
tion for uRLLC and eMBB requests, which are related to real-
time collaboration tools, remote desktop applications, video
conferencing, and other high-bandwidth applications. During
business hours, the allocation for mMTC increases, catering
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Fig. 7: Comparison of dropped uRLLC USRs in a) and percentage of dropped uRLLC USRs in b) when required NFs’ all the

serving instances are not available while handling peak traffic.

to IoT devices and automated systems performing continuous
tasks such as data monitoring and telemetry. So, by taking the
dataset analysis observations, the proposed max-flow problem
solver prioritizes the mMTC requests over other slice types
during working hours of the day. In contrast, the baseline
scheme treated all request types equally without considering
the time-based patterns. The results, as shown in Fig. 6a and
Fig. 6b, indicate that the total number of dropped mMTC
requests is higher in the base case compared to the proposed
max-flow-based scheme. A similar observation was made for
eMBB/uRLLC slices as shown in Fig. 7a and Fig. 7b, which
experience sudden peak traffic during night hours. So, by
intelligently prioritizing a slice service that experiences sudden
higher demand over the others experiencing less demand at any
time of the day, MNOs can sustain the situations of sudden
unknowns without losing on the high availability of service.
Finally, using these experiments, Fig. 8a and Fig. 8b illustrate
the CDFs of the total number of dropped USRs with and
without the use of the max-flow problem solver for mMTC

and eMBB/uRLLC slice types respectively. Note that, in these
experiments, we have prioritized one slice only over the other
at a time. However, based on the scaling strategies and the
availability of serving instances of different NFs involved,
multiple slice types that require immediate attention can also
be prioritized. Overall, these findings highlight the efficacy
of the max-flow problem solver in prioritizing specific slice
types requiring immediate attention, thereby reducing dropped
requests in accordance with temporal patterns. Hence, by
considering these usages patterns and applying the proposed
system model, the SGC can effectively prioritize critical ser-
vice requests, ensure network resilience, and deliver optimal
quality of service to users even during sudden unforeseen
situations of failures and overloads.

V. CONCLUSION AND FUTURE WORK

Building a resilient SGC that can sustain various unexpected
and unforeseen situations has become a bare necessity as the
current 5G is advancing to 6G networks, especially when 5GC
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Fig. 8: CDFs of the total number of dropped USRs in a) mMTC slice and b) uRLLC slice.

converges with different network slice service demands. This
paper has presented a comprehensive exploration of the Ford-
Fulkerson algorithm, a max-flow problem solver, for efficient
resource utilization and service prioritization in the control
plane of 5GC, to tackle the sudden situations of failure of NFs
or overloads. By proactive execution of the Max-Flow problem
solver and leveraging its capabilities, the proposed solution is
able to serve the best possible maximum USRs. Through ex-
tensive experiments on the 5G testbed, we have demonstrated
the effectiveness of the proposed approach in maximizing
the served requests while allowing for prioritization based
on specific requirements or network policies on the required
slices. We hope that our work provides valuable insights into
the 5SGC'’s capacity, aiding MNOs to make informed decisions
on resource allocation and ensure resilient service provisioning
while optimal utilization of the resources. In the future, we
plan to extend this solution to the data plane as well, where a
variety of QoS traffic flows arrive on different slices seeking
slice service prioritization.
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