
On Handling Class Imbalance in Continual Learning based
Network Intrusion Detection Systems

Suresh Kumar Amalapuram
Indian Institute of Technology Hyderabad

cs19resch11001@iith.ac.in

Thushara Tippi Reddy
Indian Institute of Technology Hyderabad

es17btech11021@iith.ac.in

Sumohana S. Channappayya
Indian Institute of Technology Hyderabad

sumohana@ee.iith.ac.in

Bheemarjuna Reddy Tamma
Indian Institute of Technology Hyderabad

tbr@iith.ac.in

Abstract
Modern-day cyber threats are growing more rapidly than ever be-
fore. To effectively defend against them, Anomaly-based Network
intrusion detection systems (A-NIDS) must evolve continuously.
Traditional machine learning techniques are ineffective in handling
sequentially evolving tasks, and Neural Networks (NNs) in partic-
ular suffer from Catastrophic Forgetting (CF) of old tasks when
trained on new ones. Continual Learning (CL) strategies help to
mitigate CF by imposing constraints while training NNs on sequen-
tially evolving data like network traffic. However, applying the CL
framework in the design of A-NIDS is not straightforward due to
the heavy Class Imbalance (CI) in the network traffic datasets. As
a result, the performance of the system is very sensitive to the task
execution order. In this work, we proposed a CL based A-NIDS by
applying sample replay with Class Balancing Reservoir Sampling
(CBRS) to mitigate CI in a Class Incremental Setting (CIS). Using
the CICIDS-2017 dataset, experiments are conducted by permuting
the majority class across the different task execution orders using the
proposed CL based A-NIDS. We found that using auxiliary memory
with context-aware sample replacing strategies, CF can be reduced to
a greater extent, as opposed to data augmentation techniques which
may alter the original data distribution and increase training time
(with oversampling methods).

Keywords
Network intrusion detection system (NIDS), Continual learning,
Deep learning, Catastrophic forgetting, Class imbalance.

1 Introduction
Intrusion Detection Systems (IDS) are an essential part of modern-
day defense infrastructure to protect organizations from rapidly
growing cyber threats. There is a necessity to incorporate sophisti-
cated technologies in the design of these systems to defend against
these modern-day threats. Deep Learning (DL) models have sur-
passed human performance in several computer vision tasks, and
therefore system designers have gradually started incorporating it
to build IDS. Yousefi-Azar et al. [40] used a single architecture of
malware classification and anomaly detection where the features
are learned using the AutoEncoder (AE). Singla and Bertino [33]
provided a detailed analysis of various DL based methods in terms
of their practicality for tasks like intrusion detection, malware anal-
ysis, and Botnet detection. Wang et al. [39] translated raw traffic
into images and utilized Convolutional Neural Networks (CNNs) for
representation learning to classify malware traffic. However, these

DL based methods need to be self adaptable over time to cope with
the ever-growing cyber attacks. Due to the non-stationary nature of
threat data [1], the training process may become more complex, so
the A-NIDS needs to self adoptable to the frequent data distribution
changes. Continual Learning (CL) algorithms provide a promising
direction to achieve the goals as mentioned above.

CL constitutes the ability to acquire, preserve, and fine tune the
knowledge gained incrementally [6]. However, implementing CL
using NNs on non-stationary data distributions results in the poor
generalization of the model; this phenomenon is known as Cata-
strophic Forgetting (CF). Various approaches have been proposed to
alleviate CF, that can broadly be categorized into three groups [29]
as follows: 1) regularization based, 2) dynamic architecture, and
3) memory replay based. Regularization based methods mitigate CF
by constraining the changes to the values of parameters of the model.
Architectural properties are adjusted to prevent the interference of
novel information with previously acquired knowledge in dynamic
architecture based methods. Most appropriate information (samples)
is replayed in memory replay based methods, and these replayed
samples can either be from original train data or pseudo samples
which are synthetically generated. As a consequence of employing
these methods, CF can be reduced to a great extent which helps
CL algorithms to achieve greater success in computer vision related
tasks. However, CL algorithms may not be effective when applied to
network data due to their diverse characteristics and are genetically
different from image (vision) data. One of the most noticeable char-
acteristics of the network data is Class Imbalance (CI), which poses
a major challenge to the learning algorithm by introducing a bias
towards the majority class, and thereby affecting the performance of
A-NIDS [31].

Dealing Class Imbalance

Algorithmic Level
approachesData Level approaches Hybrid approaches

Figure 1: Approaches to deal with class imbalance data

CI is a critical problem seen in many real-world datasets (e.g.,
activity recognition, sentiment analysis, and text mining, etc.) [21].
Various techniques have been designed in the literature to address
this issue, and they are broadly classified as data level, algorith-
mic level, and hybrid techniques (shown in Figure 1) [12]. Data

level techniques reduce the skewness in the data by resampling ap-
proaches, whereas algorithmic level techniques work by altering
the objectives of the learning algorithms (cost sensitive learning).
Hybrid approaches rely on both the balancing approaches mentioned
above.

Johnson and Khoshgoftaar [18] presented various data, algorith-
mic level and hybrid approaches for class imbalance in the DNNs,
and reported that nearly research was conducted with an emphasis
on computer vision tasks using CNN. Delange et al. [8] discuss
the task order effect (balanced, imbalanced) on an image dataset,
and the related task orderings were created for the imbalance image
dataset, and the notion of relatedness was captured using Expert
Gate AE. In this work, we evaluate the impact of class balancing
(using an algorithmic approach) on the effect of task execution order
issue (see subsection 5.1) that arises due to the CI in the CL based
A-NIDS in a CIS. However, our work differs from earlier works
and is unique in the following ways: CL experiments are conducted
on the network data which exhibits heavy CI compared to image
data (where predominant CL literature was focused) , application of
CL framework to intrusion detection is still in its nascent stage, and
the performance results of our experimental setup which is build by
permuting the majority class across the different task orders signifies
the consideration of heavy CI in the design of new CL algorithms.
Through this work we explore the efficacy of CL methods in the
A-NIDS context while addressing the CI problem.

The remainder of this manuscript is organized as follows. The
next section describes the related work on various class balancing
approaches in the literature. Section 3 presents the proposed CL
based A-NIDS architecture. Data processing details are discussed
in Section 4 and performance results are present in Section 5. Finally,
the conclusions and future directions are given in Section 6.

2 Literature Review
In this work, continual learning (also known as life long learn-
ing [36]) is applied to A-NIDS to make detection systems self-
adaptable to the modern threats and also to reduce the re-training
overhead. However, CL based learning algorithms are sensitive to
the task execution order in which they are trained in due to heavy
class imbalance in network traffic. On the contrary, class imbalance
is relatively a rare issue in computer vision domain where CL is very
effective. So, this section is devoted to reviewing various schemes
that alleviate the class imbalance problem.

Data level (resampling) techniques, also known as preprocess-
ing techniques applied before the training, include oversampling
and undersampling. Oversampling techniques improve the minority
class representation by generating additional samples; this genera-
tion process can be achieved in several ways. One of the simple ways
for generation is to replicate the available minority class samples
randomly (Random Oversampling (ROS) [2]), but this method may
result in overfitting [23]. Another popular oversampling approach is
to generate the synthetic samples (Synthetic Minority Oversampling
Technique (SMOTE) [4]). All the oversampling techniques result
in increased training time due to an increase in the training set size.
In stark contrast to CI between different classes, the cluster based
oversamlpling [17] technique will reduce the within-class imbalance.

In recent times, Deep Neural Network (DNN) based generative meth-
ods gained popularity for generating synthetic samples. Variational
AutoEncoder (VAE) [19], and Generative Adversarial Networks
(GAN) [14], and conditional GAN [9] are familiar DNN based archi-
tectures for oversampling. Undersampling techniques will reduce the
imbalance by eliminating the majority class representation, so these
techniques will reduce train set size and time. One of the simplest
techniques is Random undersampling (RUS) [34], which excludes
the samples randomly, but these methods may remove the most in-
formative samples [25]. However using informed undersampling
techniques, this loss can be reduced [17, 27]. In general, undersam-
pling methods are computationally effective and provide efficient
storage against their counterpart oversampling. Hybrid approaches
combine both oversampling and undersampling techniques [3].

Algorithmic level approaches mitigate the imbalance by fine-
tuning the existing learners, for example, by varying the cost as-
sociated with each misclassification error (cost sensitive learning),
adjusting the decision threshold (multi-class learning), and methods
focusing one target class learning (one class learning) [20]. Cost
sensitive learning is one of the popular algorithmic approaches, in
which misclassification cost is heavily penalized to reduce the data
skewness [22], but determining these penalty costs is a hard task (and
depends on application domain) [13]. Wang et al. [38] introduce two
novel loss functions to train DNNs with imbalanced data.

Hybrid approaches combine the techniques above to build robust
learners [21], and ensemble based methods are more popular in
this category. Tanha et al. [35] compare the significance of various
boosting algorithms against 19 multi-class imbalanced datasets, so
boosting techniques can be combined with resampling methods (e.g.,
AdaC1, AdaC2, and Adac3) [17] or cost sensitive approaches (e.g.,
SMOTEBoost) [5]. Ertekin [10] introduces an adaptive oversampling
technique combined with active learning (VIRTUAL) and generates
synthetic samples during the training process.

3 Proposed Continual Learning based A-NIDS
System

This section briefly describes the proposed architecture that deals
with class imbalance issues in a CL based A-NIDS. The proposed
architecture (refer Figure 2) is designed with a goal to minimize the
coupling between training and deployment processes, and therefore
the architecture is functionally bisected into Training and Deploy-
ment segments. These two segments operate simultaneously in an
asynchronous fashion, which helps to realize the continual learning
of A-NIDS, in order to combat the ever-growing cyber threats. The
training segment administers the data preparation activities and the
training process of CL based learning algorithms. The deployment
segment extracts the features from the incoming data stream and
feeds them to the inference engine, which characterizes the nature
(Benign or Anomaly) of the input data/traffic stream. In the follow-
ing, we comprehensively explain each segment.

3.1 Training Segment
The success of any artificial learning system is severely affected by
the quality of data used for training, especially in an A-NIDS setting
where the lack of quality datasets is apparent due to privacy and

ii

Datasets

Feature Engineering

 Data Augmentation

 Task based Data Representation

Fully Connected Neural Network

Inference Engine

Data Down Sampler

Feature Extractor

Convolutional Neural Network

Continual Learning Modules

Data Preprocessing Engine

Model
Selector

Benign Anomaly

Deployment
Segment

Training Segment

Data Down Sampler

Feature Extractor

Task
based
data

Data Stream

Figure 2: Architecture of the proposed CL based A-NIDS

security concerns. Due to the scarcity of these modern datasets (rep-
resentatives of modern cyber threat data), it’s an arduous task to add
more intelligence to these detection systems to capture future cyber
threats (zero-day attacks). One implicit way to overcome this issue
is to employ CL based learning algorithms, which can be trained
sequentially each and every time novel attack representative data
is available. Additionally, CL algorithms also minimize the retrain-
ing overhead, requiring only limited data (specific to a particular
task). The steady performance of CL algorithms will however be
reduced by the CI Issue in the dataset. As remediation, we conduct
experiments with various algorithmic level approaches to improve
class balance and try to understand their effectiveness on perfor-
mance metrics. So, enhancing the CL-based learning algorithm’s
performance using the class balancing approaches is the crux of
the training segment. This entire workload is distributed between
the Data Preprocessing Engine and Continual Learning Module,
each of which are described in detail in the following

3.1.1 Data Preprocessing Engine: Data curation is an important
functional aspect of any learning system, and performance degrada-
tion can be a consequence of not handling this well (due to missing
values and noise in the data). The feature engineering peripheral is
devoted to handling the aforementioned issues like the selection of
most significant features and data massaging (fill missing values,
data normalization, etc.). A more detailed discussion of these meth-
ods is presented in section 4. When employing data level approaches
for dealing with CI, the Data Augmentation sub-module is active,
which otherwise its an optional activity. Now, at this juncture data
is relived from all the impurities and ready for the translation to a
different representation known as Task based data representation.
Each task essentially represents one or more class of attack data
learn by the CL based algorithm, and all these different tasks are
learned sequentially. In literature, this sequential learning is known
as Class Incremental Learning.

3.1.2 Continual Learning Modules: CL module is a platform
which acts as both container and executor for the CL based learning
algorithms for A-NIDS. Constrained by the availability of hardware
resources, various CL algorithms can be trained simultaneously,
and better performers will be picked for deployment at the current

Table 1: Model Architectures

(a) Simple MLP

Layer (type) Output Shape Param
Dense [None, 100] 7100

Dropout [None, 100] 0
Dense-1 [None, 1] 101

(b) Simple CNN

Layer (type) Output Shape Param
Conv2d [None, 5, 8, 14] 140
Flatten [None, 560] 0
Dense [None, 100] 56100

Dropout [None, 5, 8, 14] 0
Dense-1 [None, 1] 101

moment, and this deployment process is repeated indefinitely. Ad-
ditionally, this module is responsible for managing the algorithmic
level approaches [7] when tackling CI, and we used the sample
replay CBRS technique for this (see paragraph 3.1.2.1). Various
experiments were conducted on two different model architectures.
They are

• A Simple Multilayer Perceptron (MLP), containing single
hidden layers with 100 neurons with Rectified Linear Unit
(ReLU) activation. The output layer contains a single neuron
with sigmoid activation.

• A Simple Convolutional Neural Network (CNN), with one
2D convolutional layer having 14 output channels, uses 3×3
filters, and its output is flattened. A dense layer of 100 neurons
with ReLU activations is followed. The penultimate layer is a
dropout layer with a probability of 0.5, and eventually, the
output layer has a single neuron with sigmoid activation.

3.1.2.1 Sample Replay with CBRS: To understand the efficacy
of algorithmic level class balancing approaches in the CL setting, we
used sample replay with a memory population technique known as
Class Balancing Reservoir Sampling (CBRS) [7]. In CBRS, we will
have an auxillary memory (say size M units) used to store the (M)
informative training samples. The Total Loss (L) function of CBRS
has two components, one is for stream loss Lt for each task, other

iii

loss Lm is for memory replayed samples, and these are balanced
using a hyperparameter a (see Equation 1). The predictor function
fθ (parametrized by θ) is either a NN or a CNNs, which is trained
using a CL setup. CBRS selects the most informative samples from
the stream per each task, and stores them in the memory for sample
replay.

Lt = ℓ(fθ (xt ,yt))

Lm = ℓ(fθ (xm),ym)

L = a×Lt+(1−a)×Lm

(1)

We sketched two variants for balancing the samples in memory
especially for the attack class. In Whole Attack Class Balance
(WACB), all attack classes are considered as a single class and
balanced along with benign samples, where as in Individual Attack
Class Balance (IACB) each individual attack class is balanced.

3.2 Deployment Segment
Anomaly detection on streaming data brings additional challenges
compared to its offline variant due to the non-stationary nature of
the data (known as concept drift); as a result, the learning model
becomes obsolete over time. To compensate for this effect, it is al-
ways desirable to deploy best-performing learning models that are
trained on the most recent data. Dealing with high data flow rates of
network traffic is the most neglected issue when discussing A-NIDS;
employing a high speed cache is the most convenient solution but
increases cost. Another straight forward approach is to use a data
down sampler, which ignores a fraction of traffic data uniformly at
random. Feature Engineering techniques are applied on the incom-
ing stream to translate it into meaningful features which are fed to the
Inference Engine (IE). IE is the most visible peripheral/interface
of the entire A-NIDS, and provides more flexibility to the end user
in monitoring the network intrusion activities. IE is the placeholder
for CL based learning model and provides an interface for easier
deployment of the newer model over time. Eventually, IE classifies
the incoming traffic data stream as Benign or Anomaly

4 Data Preparation
Learning the data distribution representation by training instances
is always exciting, particularly when the training data inherently
contains impurities (noise, missing values, etc.). This section is
devoted to explaining how we processed the dataset to diminish
these impurities.

4.1 Dataset Description
Canadian Institute for Cybersecurity (CIC) is the most renowned
institute for generating various Network security datasets, and CI-
CIDS 2017 is one such popular dataset. It is a labeled multi-attack
class dataset, containing more than 80 network traffic flow based
features extracted using CICFlowmeter. IDS2017 dataset contains
a total of 15 class labels (1 Benign and 14 Attack classes) [32].
Although this dataset is among the state of the art, it possesses sev-
eral shortcomings. Some of them include heavy class imbalance,
scattered presence of dataset (across different files), and huge vol-
ume of dataset [28]. The dataset was scattered across 8 different csv
files (available in kaggle) that were used for our experiments [26].

All these 8 csv files are coalesced into a single large csv file before
feature engineering.

4.2 Feature Engineering
CICIDS2017 dataset features which contains the values NULL or
Infinity are replaced with 0. Several redundant features are also
found, which have their only value as 0, and such features are re-
moved. The removed list of features is Bwd PSH Flags, Bwd URG
Flags, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk
Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, and Bwd Avg
Bulk Rate. class sklearn.preprocessing.LabelEncoder was used to
encode all the categorical features [30]. Our focus in this work is the
design of A-NIDS, so all the attack class labels are replaced with
the label 1, and benign class labels with the label 0. Prior to training,
all the dataset values are normalised using Min-Max normalization
technique (2), where χi j is the specific value of feature χ j, and δ

(non-zero value) was added to the denominator. Eventually, we have
70 features for training CL based A-NIDS .

xi j =
χi j −min

(
χ j
)

max
(
χ j
)
−min

(
χ j
)

+δ
(2)

4.3 Data Augmentation
Learning from imbalanced data has received massive attention from
a larger audience due to the CI data in many real-world applications.
As a result of CI, learning algorithms will be skewed towards the
majority class; thus, minority classes are mostly neglected or ig-
nored. The job of the data augmentation module is to lower the class
imbalance utilizing the data level/data augmentation approaches.
Some well-known data augmentation techniques are RO, Random
Undersampling Random Oversampling (RURO), and variants of
SMOTE. More than 80 variants of SMOTE are available, among
which, some of the most familiar extension methods [11] are Regular
SMOTE, Adaptive Synthetic sampling (ADASYN) [16], Borderline-
SMOTE (BSMOTE) [15]. These techniques are applied during the
preprocessing stage (as supplementary work), and sometimes may
cause extra burden to the training process. For instance, when ap-
plied RURO on the CICIDS2017 dataset, the strength of minority
class (Heartbleed, Web Attack Sql Injection, Infiltration etc.) sam-
ples are increased (see Table 2); however, these newer samples
are replications of existing instances, thus learning algorithm may
overfit the minority classes.

Table 2: Increased Minority Class Samples after RURO
Web Attack XSS Infiltration Web Attack Sql Injection Heartbleed

Number of samples in CICIDS2017 456 25 14 7
Number of samples after RURO 111251 111251 111251 111251

Another most noticeable difficulty with oversampling techniques
is increased training set size that incur a heavy toll on training time.
For example, see Table 3 which contains the training set sizes of
the CICIDS2017 dataset after applying various data augmentation
techniques. The original column indicates the training set size of
CICIDS2017 (without data augmentation).

Table 3: Training Set Size after Oversampling

original RO RURO SMOTE BSMOTE ADASYN
Number of samples (in millions) 19.8 31.9 16.6 31.9 30.8 31.9

iv

On the other hand, while undersampling techniques eliminates the
majority class samples, one potential problem with this method could
be the loss of most informative samples, as a result, original data
distribution will be altered. However, informed search strategies can
be used to preserve informative samples as opposed to RUS, but this
may raise the complexity of the training process. Thus, motivated by
these remarks on the data augmentation strategies, we shift our focus
to the algorithmic ways to deal with CI, which essentially preserve
the original data distribution.

4.4 Task based Data Representation
CL algorithms mimic human-like learning where the training data
is seen as a sequence of tasks, and learn them incrementally [24].
Generally, each task’s data is locally independent and identically
distributed (iid), but in our case, each task will represent more than
one attack class distribution to learn. The CICIDS2017 dataset is
transformed into 5 tasks and tested under the Class Incremental
setting [37].

4.5 Execution Environment
Experiments are conducted using Google Colab (pro) platform (with
25/35 GB memory, and Python 3 Google compute engine backend
GPU/TPU), and a workstation (64-bit, 32 GB RAM, 2 GB GPU,
and 6-Core processor). Keras software library is used for training
the NNs, and CNNs.

5 Performance Results
We conducted the experiments to empirically understand the impact
of class balancing approaches (algorithmic level) on the task order
effect seen in the CL-Based A-NIDS. Towards this, we used one
algorithmic level approach (CBRS [7]) with different buffer sizes
using two NN (simple MLP and simple CNN) architectures. We used
performance metrics in subsection 5.1 as our baseline (see Table 4).
Due to the heavy CI in the dataset, considering accuracy metric
alone will not be sufficient for a complete understanding of the
various algorithms, so additional metrics recall, Precision, F1-
score are used. All these metrics populate the confusion matrix
(where TP is true positives, TN is true negatives, FP is false positives,
and FN is false negatives)

Accuracy =
TP+TN

TP+FP+TN+FN
, (3)

Precision =
TP

TP+FP
, (4)

Recall =
TP

TP+FN
, (5)

F1 =
2∗Precision*Recall

Precision+Recall
. (6)

5.1 Effects of Task Execution Order
The CICIDS2017 training data was partitioned into 5 tasks, with
each task containing three classes of the dataset. Five task orders
were created by placing Beningn in each of this 5 tasks respectively.
Specifically, the Benign class was placed only in one of the five tasks

Table 4: Task Execution Order Effect on Performance Metrics
using CICIDS2017 dataset with Simple MLP Architecture

Task order Accuracy Precision Recall F1 Score
0 in task 1 0.227304 0.202313 0.993013 0.336141
0 in task 2 0.332665 0.211785 0.877167 0.341191
0 in task 3 0.197140 0.197029 1.000000 0.329197
0 in task 4 0.779760 0.439877 0.431500 0.435648
0 in task 5 0.804652 0.867224 0.009916 0.019608

in each task ordering. The aim of this setting is to introduce heavy
imbalance in the different task orders. It was noticed that different
task execution orders result different performance as quantified by
the metrics. This is due to permuting the Benign class (Major class)
across the different task orders (see Table 4 and Table 5). This
behavior is known as Task Order Sensitivity. These performance
metrics are obtained by training a simple MLP (simple CNN) in a
CIS on the original CICIDS2017 dataset. These results are used as a
baseline for our remaining experiments.

Table 5: Task execution order effect on performance metrics
using CICIDS2017 dataset with simple CNN architecture

Task order Accuracy Precision Recall F1 Score
0 in task 1 0.197784 0.197156 1.000000 0.329374
0 in task 2 0.187112 0.188565 0.946438 0.314474
0 in task 3 0.186216 0.185445 0.922887 0.308833
0 in task 4 0.250855 0.198235 0.920580 0.326222
0 in task 5 0.805242 0.933576 0.012265 0.024213

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
cu

ra
cy

Baseline
IACB-6k
IACB-6k
IACB-12k
WACB-12k

(a) Accuracy

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ec

is
io

n

(b) Precision

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
ca

ll

(c) Recall

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F1
-S

co
re

(d) F1-Score

Figure 3: Comparison of performance metrics of the variants of
CBRS using simple MLP architecture on the CICIDS17 dataset

v

5.2 Impact of Algorithmic Level Method
Sample replay with CBRS was used to understand the impact of
the algorithmic level approach on task order sensitivity. We scruti-
nized this method extensively by varying some of its parameters like
the memory size, and the way classes are loaded into the memory
(WACB, IACB) using simple MLP, and simple CNN architectures.
This is done by fixing the hyperparameter a value (to 0.3). A total
of 8 different experiments were conducted (see Table 6). All these
are partitioned into two groups based on the underlying architecture
(see Figure 3 and Figure 4). For the first group, Figure 3 shows
the accuracy, precision, recall, and f1-score on CICIDS dataset for
experimental configuration using simple MLP architectures. The
experiment with the WACB configuration, a memory size of 12000
units has optimal performance. All the individual performance met-
rics for this configuration are shown in Table 8, and the baseline
metrics can be seen Table 4. The seconds group of experiments are
carried out using the simple CNN architecture (see Figure 4), with
the IACB configuration. A memory size of 6000 units yields the
optimal performance, and more fine grained performance details of
this configuration are available in Table 7, and the baseline metrics
can be seen in Table 5.

Table 6: Various experimental strategies

S.No Architecture Sample Loading strategy Memory Size (units) Legend label
1 Simple MLP IACB 6000 IACB-6k
2 Simple MLP IACB 12000 IACB-12k
3 Simple MLP WACB 6000 WACB-6k
4 Simple MLP WACB 12000 WACB-12k
5 Simple CNN IACB 6000 IACB-6k
6 Simple CNN IACB 12000 IACB-12k
7 Simple CNN WACB 6000 WACB-6k
8 Simple CNN WACB 12000 WACB-12k

Table 7: Performance metrics of different task order using Sam-
ple Replay with CBRS (IACB, Memory=6000 units) with simple
CNN architecture

Task order Accuracy Precision Recall F1 Score
0 in task 1 0.926151 0.740025 0.963682 0.837173
0 in task 2 0.951086 0.801905 0.998326 0.889400
0 in task 3 0.967334 0.860985 0.994806 0.923071
0 in task 4 0.977965 0.923883 0.967890 0.945375
0 in task 5 0.991245 0.975164 0.980532 0.977840

Table 8: Performance Metrics of different Task order using
Sample Replay with CBRS (WACB, Memory=12000 units) with
Simple MLP Architecture

Task order Accuracy Precision Recall F1 Score
0 in task 1 0.960857 0.943461 0.852391 0.895617
0 in task 2 0.888148 0.910910 0.479085 0.627921
0 in task 3 0.957066 0.876340 0.910550 0.893117
0 in task 4 0.888798 0.948913 0.460311 0.619909
0 in task 5 0.985835 0.974084 0.953467 0.9636650

This experimental study reveals that the task order sensitivity can
be scaled down using the sample replay approach with appropriate
memory population techniques. Another noticeable insight is that,

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
cu

ra
cy

Baseline
IACB-6k
IACB-6k
IACB-12k
WACB-12k

(a) Accuracy

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ec

is
io

n

(b) Precision

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
ca

ll

(c) Recall

1 2 3 4 5
Benign class across tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F1
-S

co
re

(d) F1-Score

Figure 4: Comparison of performance metrics of the variants of
CBRS using simple CNN architecture on the CICIDS17 dataset

increasing the auxiliary memory size may not yield the optimal
results, and sometimes it depends on the underlying architecture
also.

6 Conclusions & Future Directions
It is essential to incorporate modern techniques into the design of
A-NIDS to protect against rapidly proliferating cyber threats. The
CL framework is one of the most promising approaches that provide
more flexibility to evolve quickly. However, integrating CL algo-
rithms to IDS is not straightforward due to the inherent impact of task
execution order on the performance metrics due to the heavy CI. We
explored algorithmic level methods to fix the CI problem that araises
in the context of network data and CL framework. Algorithmic level
methods work by altering the existing learner, and experiments are
carried using sample replay with the CBRS algorithm. This method
is shown to achieve promising results; additionally, we also observed
the impact of buffer size on the performance metrics, which needs
careful attention.

As future work, we plan to develop CL algorithms that identify
the unseen classes during testing on the fly and incorporate them
easily once labeled data is available (Open World Learning). We plan
to identify challenges involved in bringing the notion of relatedness
among the various tasks for creating more natural task execution
ordering (curriculum learning). This work also brings into the lime-
light the importance of dealing with CI in general CL frameworks.
Another interesting direction would be generating synthetic sam-
ples during the training process for the minority class, rather than
generating at the preprocessing stage (data level approaches) [10].

vi

References
[1] Blake Anderson and David McGrew. 2017. Machine Learning for Encrypted

Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). Association for
Computing Machinery, New York, NY, USA, 1723–1732. https://doi.org/10.
1145/3097983.3098163

[2] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. 2004.
A Study of the Behavior of Several Methods for Balancing Machine Learning
Training Data. SIGKDD Explor. Newsl. 6, 1 (June 2004), 20–29. https://doi.org/
10.1145/1007730.1007735

[3] Silvia Cateni, Valentina Colla, and Marco Vannucci. 2014. A method for resam-
pling imbalanced datasets in binary classification tasks for real-world problems.
Neurocomputing 135 (2014), 32–41. https://doi.org/10.1016/j.neucom.2013.05.
059

[4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res.
16, 1 (jun 2002), 321–357.

[5] Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer.
2003. SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In
Knowledge Discovery in Databases: PKDD 2003, Nada Lavrač, Dragan Gam-
berger, Ljupčo Todorovski, and Hendrik Blockeel (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 107–119.

[6] Zhiyuan Chen and Bing Liu. 2018. Lifelong machine learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning 12, 3 (2018), 1–207.

[7] Aristotelis Chrysakis and Marie-Francine Moens. 2020. Online Continual
Learning from Imbalanced Data. In Proceedings of the 37th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 1952–1961. http:
//proceedings.mlr.press/v119/chrysakis20a.html

[8] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales
Leonardis, Greg Slabaugh, and Tinne Tuytelaars. 2021. A continual learning
survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021), 1–1. https://doi.org/10.1109/TPAMI.
2021.3057446

[9] Georgios Douzas and Fernando Bacao. 2018. Effective data generation for imbal-
anced learning using conditional generative adversarial networks. Expert Systems
with Applications 91 (2018), 464–471. https://doi.org/10.1016/j.eswa.2017.09.
030

[10] Şeyda Ertekin. 2013. Adaptive Oversampling for Imbalanced Data Classification.
In Information Sciences and Systems 2013, Erol Gelenbe and Ricardo Lent (Eds.).
Springer International Publishing, Cham, 261–269.

[11] Alberto Fernández, Salvador García, Francisco Herrera, and Nitesh V. Chawla.
2018. SMOTE for Learning from Imbalanced Data: Progress and Challenges,
Marking the 15-Year Anniversary. J. Artif. Int. Res. 61, 1 (jan 2018), 863–905.

[12] Vaishali Ganganwar. 2012. An overview of classification algorithms for imbal-
anced datasets. International Journal of Emerging Technology and Advanced
Engineering 2, 4 (2012), 42–47.

[13] Adel Ghazikhani, Reza Monsefi, and Hadi Sadoghi Yazdi. 2013. Online cost-
sensitive neural network classifiers for non-stationary and imbalanced data streams.
Neural computing and applications 23, 5 (2013), 1283–1295.

[14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. (2014), 2672–2680.

[15] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. 2005. Borderline-SMOTE: A
New Over-Sampling Method in Imbalanced Data Sets Learning. In Advances
in Intelligent Computing, De-Shuang Huang, Xiao-Ping Zhang, and Guang-Bin
Huang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 878–887.

[16] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN:
Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence).

[17] Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering 21, 9 (2009), 1263–1284.

[18] Justin M Johnson and Taghi M Khoshgoftaar. 2019. Survey on deep learning with
class imbalance. Journal of Big Data 6, 1 (2019), 1–54.

[19] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

[20] Sotiris Kotsiantis, D. Kanellopoulos, and P. Pintelas. 2005. Handling imbalanced
datasets: A review. GESTS International Transactions on Computer Science and
Engineering 30 (11 2005), 25–36.

[21] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and
future directions. Progress in Artificial Intelligence 5, 4 (2016), 221–232.

[22] Charles Ling and Victor Sheng. 2010. Cost-Sensitive Learning and the Class
Imbalance Problem. Encyclopedia of Machine Learning (01 2010).

[23] Alexander Liu, Joydeep Ghosh, and Cheryl Martin. 2007. Generative Oversam-
pling for Mining Imbalanced Datasets. International Conference on Data Mining,

66–72.
[24] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient Episodic Memory

for Continual Learning. (2017), 6470–6479.
[25] Octavio Loyola-González, José Fco. Martínez-Trinidad, Jesús Ariel Carrasco-

Ochoa, and Milton García-Borroto. 2016. Study of the impact of resampling
methods for contrast pattern based classifiers in imbalanced databases. Neurocom-
puting 175 (2016), 935–947. https://doi.org/10.1016/j.neucom.2015.04.120

[26] Arash Habibi Lashkari man Sharafaldin and Ali A. Ghorbani. 2018. CICIDS2017
Intrusion Detection Evaluation Dataset. Retrieved July 2, 2021 from /https:
//www.kaggle.com/cicdataset/cicids2017/

[27] Inderjeet Mani and I Zhang. 2003. kNN approach to unbalanced data distributions:
a case study involving information extraction. In Proceedings of workshop on
learning from imbalanced datasets, Vol. 126. ICML United States.

[28] Ranjit Panigrahi and Samarjeet Borah. 2018. A detailed analysis of CICIDS2017
dataset for designing Intrusion Detection Systems. International Journal of
Engineering Technology 7, 3.24 (2018), 479–482. https://doi.org/10.14419/ijet.
v7i3.24.22797

[29] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review. Neural
Networks 113 (2019), 54–71. https://doi.org/10.1016/j.neunet.2019.01.012

[30] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[31] Sireesha Rodda and Uma Shankar Rao Erothi. 2016. Class imbalance problem in
the network intrusion detection systems. In International conference on electrical,
electronics, and optimization techniques (ICEEOT). 2685–2688. https://doi.org/
10.1109/ICEEOT.2016.7755181

[32] Iman Sharafaldin., Arash Habibi Lashkari., and Ali A. Ghorbani. 2018. To-
ward Generating a New Intrusion Detection Dataset and Intrusion Traffic Char-
acterization. In Proceedings of the 4th International Conference on Informa-
tion Systems Security and Privacy - ICISSP,. INSTICC, SciTePress, 108–116.
https://doi.org/10.5220/0006639801080116

[33] Ankush Singla and Elisa Bertino. 2019. How Deep Learning Is Making Informa-
tion Security More Intelligent. IEEE Security and Privacy 17, 3 (2019), 56–65.

[34] Muhammad Atif Tahir, Josef Kittler, Krystian Mikolajczyk, and Fei Yan. 2009. A
Multiple Expert Approach to the Class Imbalance Problem Using Inverse Random
under Sampling. In Multiple Classifier Systems, Jón Atli Benediktsson, Josef
Kittler, and Fabio Roli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
82–91.

[35] Jafar Tanha, Yousef Abdi, Negin Samadi, Nazila Razzaghi, and Mohammad
Asadpour. 2020. Boosting methods for multi-class imbalanced data classification:
an experimental review. Journal of Big Data 7, 1 (2020), 1–47. https://doi.org/10.
1186/s40537-020-00349-y

[36] S. Thrun. 1994. A lifelong learning perspective for mobile robot control. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’94), Vol. 1. 23–30 vol.1. https://doi.org/10.1109/IROS.1994.
407413

[37] Gido M. van de Ven and A. Tolias. 2019. Three scenarios for continual learning.
ArXiv abs/1904.07734 (2019).

[38] Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and Paul J.
Kennedy. 2016. Training deep neural networks on imbalanced data sets. In
International Joint Conference on Neural Networks (IJCNN). 4368–4374. https:
//doi.org/10.1109/IJCNN.2016.7727770

[39] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017.
Malware traffic classification using convolutional neural network for representa-
tion learning. In International Conference on Information Networking (ICOIN).
IEEE, 712–717. https://doi.org/10.1109/ICOIN.2017.7899588

[40] Mahmood Yousefi-Azar, Vijay Varadharajan, Len Hamey, and Uday Tupakula.
2017. Autoencoder-based feature learning for cyber security applications. In 2017
International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK,
USA). IEEE, 3854–3861. https://doi.org/10.1109/IJCNN.2017.7966342

vii

https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1016/j.neucom.2013.05.059
https://doi.org/10.1016/j.neucom.2013.05.059
http://proceedings.mlr.press/v119/chrysakis20a.html
http://proceedings.mlr.press/v119/chrysakis20a.html
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1016/j.eswa.2017.09.030
https://doi.org/10.1016/j.eswa.2017.09.030
https://arxiv.org/abs/1312.6114
https://doi.org/10.1016/j.neucom.2015.04.120
/https://www.kaggle.com/cicdataset/cicids2017/
/https://www.kaggle.com/cicdataset/cicids2017/
https://doi.org/10.14419/ijet.v7i3.24.22797
https://doi.org/10.14419/ijet.v7i3.24.22797
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1109/ICEEOT.2016.7755181
https://doi.org/10.1109/ICEEOT.2016.7755181
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1186/s40537-020-00349-y
https://doi.org/10.1186/s40537-020-00349-y
https://doi.org/10.1109/IROS.1994.407413
https://doi.org/10.1109/IROS.1994.407413
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/ICOIN.2017.7899588
https://doi.org/10.1109/IJCNN.2017.7966342

	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed Continual Learning based A-NIDS System
	3.1 Training Segment
	3.2 Deployment Segment

	4 Data Preparation
	4.1 Dataset Description
	4.2 Feature Engineering
	4.3 Data Augmentation
	4.4 Task based Data Representation
	4.5 Execution Environment

	5 Performance Results
	5.1 Effects of Task Execution Order
	5.2 Impact of Algorithmic Level Method

	6 Conclusions & Future Directions
	References

