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Introduction

Introduction

Mobile data traffic growth is exploding and it will reach 30.6
Exabytes per month by 2020
Telco providers/operators face challenges in order to improve their
network capacities

Utilizing unlicensed band efficiently
has gained operator interest for the
increasing their bandwidth
LTE-U, LAA, LWIP, LWA are the
different ways of realizing the efficient
utilization of unlicensed band.
We focus on LWIP for harvesting the
benefits of unlicensed band
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Introduction

Tightly coupled LTE Wi-Fi interworking - LWIP

Multihomed host realizes aggregation of multiple interface benefits
at application layer (eg., Samsung boost), Transport layer (eg.,
MPTCP) and the most recent is LWIP.
LWIP allows the interworking benefits at IP layer and it is
standardised as a part of Rel 13
LWIP has following benefits

Wi-Fi operations are controlled directly via LTE base station (eNB)
and therefore LTE core network (i.e., Evolved Packet Core (EPC))
need not manage Wi-Fi separately.
Radio level integration allows effective radio resource management
across Wi-Fi and LTE links.
LTE acts as the licensed-anchor point for any UE, providing unified
connection management with the network.

LWIP has finer level of control on radio interfaces, for making
efficient steering decision
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LWIP Architectures

LWIP Architectures
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LWIP Architectures

Architecture Comparison - Physical Layer

C-LWIP provides flexibility in adapting fractional frequency reuse
technique for mitigating inter-cell interference.
In dense urban scenarios, C-LWIP mitigates interference among
neighbouring C-LWIP nodes by assigning non-overlapping LTE
and Wi-Fi bands.
In 3GPP architecture, interference mitigation could not be done
effectively as LTE radio has no control over Wi-Fi radio.
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LWIP Architectures

Architecture Comparison - Network Layer I

1 IPSec tunnel in 3GPP architecture involves encryption of packets
at IP layer and link level encryption of WLAN.

2 C-LWIP architecture reduces the overhead of double encryption
(i.e., at IP and Layer 2 of WLAN) by using Wi-Fi key per client
derived from existing eNB key KeNB.

3 3GPP architecture required each packet sent through IPSec
tunnel to get added with the tunnel endpoint header, which adds
to inefficient use of resources over the wireless channel.
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LWIP Architectures

Architecture Comparison - Network Layer II

4 C-LWIP architecture does not require any additional headers.
5 3GPP architecture decision for traffic offloading is simplified at a

coarse level of granularity e.g., observed throughput and delay
over an interface can be the determining factor for taking the
offloading decision.

6 C-LWIP architecture supports decision making for offloading at a
very fine granularity of information i.e., channel load, received
SNR of Wi-Fi and channel characteristics such as loss and fading.

7 Both the architectures can supports existing UEs to readily work
with the LWIP nodes.
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C-LWIP Modules in NS-3

Implementation of C-LWIP in NS-3

WifiNetDevice

+m_phy: Ptr<WifiMac>
+m_mac: Ptr<WifiPhy>

+ForwardUp(Ptr<packet>,MacAddress 
from, MacAddress to): void
+Send(Ptr<packet>, 
Address,ProtocolNumber): void
+SentFrom(Ptr<packet>, Address from, 
Address to, ProtocolNumber): bool

LteEnbNetDevice

+m_phy: Ptr<LteEnbPhy>
+m_mac: Ptr<LteEnbMac>
+m_rrc: Ptr<LteEnbRrc>

+DoInitialize(): void
+Send(): void
+DoDispose(): void
+Receive(Ptr<packet>): void

LinkAggregationLayer

+FlowInfo:Struct
+epcEnbWifiNetDevice: map<unit16_t, ptr<NetDevice>>
+wifiAPMacAddress: map<unit16_t, Mac48Address>
+mapAddress: map<Ipv4Address,Mac48Address>
+FlowInfo:map<Struct, uint8_t>

+SendDownlink(Ptr<packet>, Address,ProtocolNumber): 
void
+SendUplink(Ptr<packet>, bid): void
+ForwardToLteEpcEnb(Ptr<packet>, teid): void
+ScheduleThePacket(Ptr<packet>,Flowid): void

EpcEnbApplication

+SendToLteSocket(Ptr<packet>, rnti, 
bid): void
+RecvFromLteSocket(Ptr<Socket>): void
+RecvFromS1USocket(Ptr<Socket>):void
+SentToLAL(Ptr<packet>): void
+SendToS1USocket(Ptr<packet>, teid): 
void

+m_cellId:  uint16_t 
+m_lteSocket:Ptr<Socket>
+m_s1uSocket:Ptr<Socket>
+m_imsiRntiMap:map<uint64_t, 
uint16_t>

LteUeNetDevice

+m_phy:Ptr<LteUePhy>
+m_mac:Ptr<LteUeMac>
+m_rrc:Ptr<LteUeRrc>

+Send(Ptr<packet>const Address, 
protocolNumber): void
+DoDispose(): void
+DoInitialize(): void

Ipv4Interface

+lasMode: unit32_t
+m_devices: vector<Ptr <NetDevice> >
+bool m_forwarding
+m_ifaddr:Ipv4InterfaceAddressList;
+m_node:Ptr<Node> 
+m_device:Ptr<NetDevice> 

+Send(Ptr<packet>,Ipv4Header 
src,Ipv4Header dest): void
+SetNode(Ptr<Node>):void
+SetDevice(Ptr<NetDevice>:void
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Figure : Class Diagram for C-LWIP implementation in NS3
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C-LWIP Modules in NS-3

Link Aggregation Techniques

Naive LAS or N-LAS: LTE and Wi-Fi links are simultaneously
used for sending uplink and downlink IP data traffic.

1 Packet Split N-LAS
2 Flow Split N-LAS

Wi-Fi only on Downlink LAS or WoD-LAS: Wi-Fi is used for
transmitting downlink traffic while LTE is used for transmitting both
uplink and downlink traffic.
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LTE is
used for 
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Experimental Setup

Experiment Configurations

Parameter Value

Number of C-LWIP Nodes 1 and 10
LTE Configuration 10MHz, 50 RBs, FDD
Wi-Fi Configuration IEEE 802.11a, 20 MHz
Traffic Type Mixed (voice, video, web, FTP)
Distance b/w UE & C-LWIP node 5 to 25 Meters
Distance b/w two C-LWIP node 40 Meters
Simulation Time 100 Seconds
Error Rate Model NIST Error Rate Model
Mobility Model Static
Wi-Fi Rate Control Algorithm Adaptive Auto Rate Fallback
LTE MAC Scheduler Proportional Fair Scheduler
Number of seeds 5
Wi-Fi Queue size 400 packets
backhaul Delay 40 ms
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Experimental Setup

Evaluation Scenario

Experiment 1: UDP test with one user
Experiment 2: UDP test with multiple users
Experiment 3: UDP heavy traffic in home scenario
Experiment 4: TCP heavy traffic in home scenario
Experiment 5: Mixed traffic in an indoor stadium

Traffic Class Nature Expt #3 Expt #4 Expt #5

Voice UDP 20% 20% 40%
FTP TCP 20% 60% 50%

Video UDP 60% 20% 30%
Web TCP 20% 40% 60%
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Performance Evaluation

Performance of UDP flows
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Figure : UDP Network Throughput :
One UE
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Performance Evaluation

Performance of C-LWIP in Home Scenario
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Figure : Home Scenario with one
C-LWIP Node, Mixed Traffic, UDP
Heavy
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Performance Evaluation

Performance of C-LWIP in Indoor Stadium Scenario
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Figure : REM Plot for Indoor Stadium
layout with 10 C-LWIP Nodes
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C-LWIP Nodes, Mixed Traffic
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Performance Evaluation

Performance of C-LWIP in Indoor Stadium Scenario (contd.)
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Figure : Delay of Voice Traffic in Indoor
Stadium with 10 C-LWIP Nodes
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Figure : Jitter of Voice Traffic in Indoor
Stadium with 10 C-LWIP Nodes
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Conclusions

Conclusions and Future Directions

Proposed a C-LWIP architecture and enumerated its benefits over
3GPP LWIP architecture.
Proposed C-LWIP architecture does not impose any protocol level
modification at UE side and makes the existing commercial UE to
readily work with C-LWIP.
C-LWIP module is developed in NS-3 simulator which serves as
an experimental platform
The simulation workbench supports various existing traffic
steering schemes and capable of handling the design of intelligent
traffic steering algorithms.
50% improvement in system throughput is observed for WoD-LAS,
as compared to N-LAS in an indoor stadium environment.
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Conclusions
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