
Traffic-Aware Compute Resource Tuning for Energy
Efficient Cloud RANs

Ujjwal Pawar, Bheemarjuna Reddy Tamma, Antony Franklin A
Indian Institute of Technology Hyderabad, India
{cs19mtech01006,tbr,antony.franklin}@iith.ac.in

Abstract—Cloud Radio Access Network (C-RAN) disaggre-
gates the functionalities of the base station in a way that some
of the radio processing tasks are centralized in a virtualized
computer pool of general-purpose processors (GPPs) on a cloud
platform. This enables efficient utilization of the computational
resources based on the spatio-temporal traffic fluctuations at cell
sites. In this paper, we attempt to further reduce the computation
resources by C-RAN on the cloud platform. First, we profiled
the energy consumed in an OpenAirInterface (OAI) based C-
RAN system using the existing Linux CPU frequency scaling
governors. Based on the observations, we propose a traffic-aware
compute resource tuning (CRT) scheme that reduces the energy
consumption of C-RANs. The CRT scheme opportunistically
lowers Modulation Coding Scheme (MCS) used while serving
users by utilizing all of the available radio resources in every
scheduling interval during non-peak hours. This reduction in
the MCS helps in reducing energy consumption (due to usage of
lower CPU clock frequency in the GPPs of the cloud platform)
and fronthaul bandwidth requirements. Another benefit of the
CRT scheme is its ability to work with any MAC scheduler. The
extensive simulation results show how the CRT outperforms the
existing frequency scaling governors in energy consumption while
reducing fronthaul bandwidth requirements.

Index Terms—Cloud-RAN, CPU frequency scaling, Energy
Efficiency.

I. INTRODUCTION

The rise in the number of mobile devices and their demand
for high data rates pose serious challenges to mobile opera-
tors. Cisco [1] envisages that the number of mobile devices
(including IoT devices) might reach 27.8 billion by 2023.
More crucially, these devices come from different use cases
requiring high bandwidth, low latency, or ultra-high reliable
connectivity, all simultaneously sometimes.

To support the influx of billions of mobile-connected de-
vices, mobile operators need to go for network densification
by adding heterogeneous base stations for improving coverage
and capacity. But, this puts a huge burden on the operators in
terms of CAPEX and OPEX. One way to reduce the OPEX
is by improving the energy efficiency of the base stations.
Cloud Radio Access Network (C-RAN) architecture was pro-
posed for reducing CAPEX and OPEX of next-generation
cellular networks by employing disaggregation of base sta-
tion functionalities and improving their energy efficiency.
The general idea behind C-RAN is to isolate Remote Radio
Heads (RRHs) from Base-Band Units (BBUs) of conventional
base stations. Hundreds of RRHs can be associated with a
single BBU pool realized on a central cloud platform using
GPPs through high-speed fronthaul (usually fiber optic links)

connections. This provides centralization of computing due
to which high energy efficiency can be achieved. C-RAN is
realized mainly by softwarization of RAN stack and deployed
in the cloud infrastructure using virtualization technologies. As
legacy cellular architectures heavily relied upon vendor-locked
proprietary equipment, they offered very less programmability
and therefore the scope to apply energy-efficient schemes for
base-band processing was less. This resulted in most of the
research being focused on reducing radio energy of RAN.

Due to the cloud-native architecture of C-RAN, the majority
of its components would run on commodity x86 hardware.
The migration from vendor-locked proprietary hardware to
general-purpose hardware comes with various benefits that
the next generation cellular network demands. Mobile oper-
ators can leverage the enhancements made in general-purpose
processors for better performance and energy efficiency in C-
RAN. Some of these enhancements include containerization,
virtualization, CPU frequency scaling, real-time container scal-
ing, and core pinning. Although running RAN components on
general-purpose hardware on a cloud platform provides better
compute sharing at the BBU pool, from our experiments, we
found that there is still a lot of scope for improvements towards
energy efficiency of C-RAN when running on x86 hardware.

In this paper, our objective is to improve the energy ef-
ficiency of C-RAN by adaptively tuning compute resources
needed. The major contributions of this paper are as follows:

• The energy consumption of OAI based LTE base station
running on x86 hardware is profiled. This profiling is
done by varying the traffic load, CPU clock frequency,
and MCS used. Results from this study provide an insight
into C-RAN in terms of energy consumption under dif-
ferent channel conditions and traffic load. One of the key
observations from energy profiling is that higher MCS
requires more computation resources at the base station.

• Using the experimental results on the OAI testbed, we
find that there is an optimal CPU clock frequency for each
MCS at which energy consumption is minimal without
degradation in the throughput of the connected users.

• We propose a novel traffic-aware computational resource
tuning (CRT) scheme that opportunistically reduces the
base-band processing energy by reducing the MCS and
setting the CPU clock frequency to its optimal value for
any MAC scheduler.

II. RELATED WORK

The subject of energy efficiency in cellular networks is
always a hot topic for both researchers and mobile operators.
Methods to make 5G networks more energy-efficient by re-
source allocation are required as the energy efficiency emerged
as one of the Key Performance Indicators (KPIs) of the 5G.
Earlier, cellular networks were optimized to achieve maximum
throughput, and resource allocation techniques were designed
to achieve the same, but a paradigm shift began; new metrics
like Joules per bit transfer is also seen as an important metric
for resource allocation decisions.

Most of the previous research works focused on the radio
transmit power’s energy efficiency, where they mainly ex-
ploited the downlink power control in multi-cell coordination
and multi-carrier multiple access schemes, such as Orthogonal
Frequency Division Multiplexing (OFDM). In [2], a low-
complexity energy-efficient resource allocation approach was
formulated for the downlink OFDM/OFDMA system. In [3],
user scheduling and power allocation were optimized across
a cluster of coordinated base stations with a constraint on the
maximum transmit power.

The C-RAN with its centralized architecture heavily relies
on GPPs and benefits due to the savings in CAPEX/OPEX.
In [4], the authors showed that the centralized architecture
could potentially result in savings of at least 22% in computing
resources by utilizing the variations in the processing load
across cell sites. In this work, the authors presented that the
LTE base station computation requirement is a function of the
number of Physical Resource Blocks (PRBs) and MCS. In [5],
the authors presented a mathematical analysis for subframe
processing time given the PRBs and MCS. In [6], the authors
showed the energy consumption and minimum CPU clock
frequency required to run an LTE base station for different
cell bandwidths. To further these efforts, in this work, we pro-
pose an energy-efficient traffic-aware compute resource tuning
scheme which reduces the cost of base-band processing tasks
and thereby reduces the fronthaul bandwidth requirements
using the recent enhancements and features available in GPPs.

III. MOTIVATION

This section describes results and analysis from our ex-
perimental study. The main aim for this experiment is to
study the effect of MCS on CPU clock frequency, energy
consumption, and user throughput. We report the threshold
CPU clock frequencies required to run C-RAN for different
MCS values.

A. Testbed description

To perform this experimental study, an OAI based LTE
testbed is set up as shown in Fig. 1. OAI [7] is an open-
source software implementation of 3GPP cellular network
architectures with support for C-RAN. The RRH part of C-
RAN is realized using an USRP B210 SDR board. Ubuntu
18.04 is utilized to run the BBU which has complete L1 and
L2 components. The system running this BBU has Intel Xeon
W series skylake based processor with 6 physical cores (12

USB3

NETWORK

NETWORK

BBU

EPC

FlexRAN
Controller

RRH
(USRP B210)

UE

Fig. 1: OAI-based LTE Testbed Setup.

TABLE I: Parameters used in the Testbed Experimentation

Parameter Value
System bandwidth 10 MHz (50 PRBs)

LTE Band 7
MCS Used 6, 13, 16, 21, 24 28

Duplexing Mode FDD
Percentage of PRBs Used 25%, 50%, 75%, 100%

Traffic type iperf3 UDP
Experiment Duration 120 seconds

Linux CPU Frequency Scaling Governor Performance, Conservative

logical cores), 140 Watt TDP, and maximum clock frequency
of 3.6 GHz. For User Equipment (UE), LG Nexus 5, a COTS
UE with 4G LTE support is used with a programmable SIM
card. To vary PRBs and MCS used by the UE in a controlled
manner, OAI FlexRAN controller is used as it provides an
API to control the radio resources in real-time. To change the
CPU clock frequency, cpufreq tool is used. To measure the
energy consumed, perf tool combined with turbostat is used
which reports processor topology, CPU clock frequency, idle
power-state statistics, temperature, and power consumed on
x86 processors. Table I shows various parameters used in the
testbed setup.

B. Results

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 4 8 12 16 20 24 28

T
h
re

sh
o
ld

 C
P
U

 F
re

q
u
e
n
cy

 (
G

H
z)

Modulation Coding Scheme (MCS)

Fig. 2: Threshold CPU Clock Frequency vs MCS.

1) Threshold CPU Clock Frequencies: We define threshold
CPU clock frequency as the frequency below which the radio
packet processing task is not completed in the available
time window by the BBU. This implies that the UE gets
disconnected or that the errors crop up in the BBU code
execution, which decreases the UE’s throughput. Therefore,
in our experiments, the CPU clock frequency is continuously
reduced till the threshold point is reached for each MCS. This
experiment is performed with both peak and reduced traffic

load from the UE. When running below the threshold values,
errors are very prominent at the peak load and the respective
UE gets disconnected immediately after a few Transmission
Time Intervals (TTIs). For the reduced load, throughput is
reduced in a few cases, and the errors are occurred in some
TTIs. In this study, for a given MCS, we consider the same
value as the threshold CPU clock frequency for both peak and
reduced loads.

Fig. 2 shows threshold CPU clock frequencies for different
MCS in case of 10 MHz (50 PRBs) channel bandwidth. It
is clear from the plot that higher the MCS value, higher the
CPU clock frequency needed for executing the BBU code.

2) Threshold CPU Clock Frequency vs. Linux CPU Fre-
quency Scaling Governors: To understand the energy benefits
of C-RAN operating at threshold CPU clock frequency, it is
compared with C-RAN operating on default Linux scaling
governors [8]. A C-RAN running at the threshold CPU clock
frequency for MCS 28 is compared against the one using
Linux frequency scaling governors. The Linux kernel supports
CPU performance scaling through the CPUFreq subsystem,
which provides various governors for scaling CPU clock
frequency. Out of these governors, OAI suggests using Per-
formance CPU scaling governor that, by definition, pushes
the CPU to use the highest possible clock frequency. Another
frequency scaling governor is the Ondemand governor. This
dynamic governor allows the CPU to operate at the maximum
clock frequency when the system load is high and at the
minimum clock frequency when the system is idle. While this
enables the system to adjust power consumption according
to the system’s load, it does so at the cost of latency between
frequency switching. In LTE, the MAC scheduling takes place
every 1 ms, therefore, the system might switch between idle
and heavy workloads too frequently due to traffic fluctuations.
When Ondemand governor is used, it also frequently switches
between maximum and minimum CPU clock frequency. This
frequent switching sometimes causes high latency due to
which the UE gets disconnected, or data rate gets reduced.
Hence, seeing this drawback, we decided not to include the
Ondemand governor in our experimental studies. However,
similar to the Ondemand governor, the Conservative governor
adjusts the clock frequency according to the CPU load. While
the Ondemand governor does so in a more aggressive manner,
the Conservative governor will adjust to a clock frequency
that it considers fit for the load, rather than solely choosing
between maximum and minimum. In our experiments, the
Conservative governor works perfectly without any errors.

Fig. 3 shows the average power consumption of C-RAN
(i.e., BBU part) running on Linux frequency scaling governors
and the threshold CPU clock frequency for MCS 28. Perfor-
mance governor consumes the highest power at an average of
63Watts because it uses the highest available clock frequency
of 3.6 GHz, whereas, Conservative governor performs better
with an average power consumption of 43 Watts. Using the
threshold frequency for MCS 28 i.e., 2.6 GHz, we get the
least amount of power consumption at 41 Watts.

 40

 45

 50

 55

 60

 65

 70

Threshold Frequency Conservative Governor Performance Governor

A
v
e
ra

g
e
 P

o
w

e
r

(W
a
tt

s)

CPU Frequency Scaling Method

Traffic Load 100%
Traffic Load 25%

Fig. 3: Comparison of Average Power consumption by Static
CPU Frequency and Linux Frequency Scaling Governors.

3) Power Requirement at Threshold CPU Clock Frequency:
Experiments are conducted to measure the power consumption
of BBU for different MCS by setting CPU at their respective
threshold frequencies. To examine the effect of the number of
PRBs used, the percentage of PRBs used is varied from 25% to
100%. To vary the percentage of PRBs in this experiment the
FlexRAN API is used. As shown in Fig. 4, MCS 28 consumes
the highest power at an average of 41 Watts, whereas MCS
6 consumes the least average power at 29 Watts. For all the
MCSs, there is a slight increase in power consumed when
increasing the percentage of PRBs used. This is because the
CPU always runs at the fixed threshold clock frequency and
sips almost the same power.

4) Effect of MCS Reduction on Energy and Throughput:
An experiment is conducted to evaluate the energy gains
by reducing the MCS when the system is not loaded i.e.,
non-saturated. In this experiment, one UE which has perfect
channel conditions with a downlink traffic requirement of
10 Mbps for 120 seconds is considered. Fig. 5 shows the
energy consumption for the threshold clock frequency and two
Linux frequency scaling governors. By reducing the value
of MCS to 13, all 50 PRBs are utilized for serving the
UE at 10 Mbps. The CPU frequency is tuned down to the
threshold clock frequency for MCS 13 i.e., 1.7 GHz using
the Userspace Governor. This results in the total energy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

28 24 21 16 13 6

P
ow

er
 (

W
at

ts
)

MCS

100% PRB
75% PRB
50% PRB
25% PRB

Fig. 4: Average Power Consumption for Different MCS with
respective threshold clock frequencies.

consumption of 3776 Joules which is 46% and 24% lesser
compared to Performance and Conservative scaling governors,
respectively. The UE does not experience any difference in
terms of achieved throughput in all the three cases.

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

Threshold Frequency Conservative Governor Performance Governor

E
n
e
rg

y
 (

Jo
u
le

s)

CPU Frequency Scaling Method

Fig. 5: Energy Consumption vs CPU Frequency Scaling.

C. Key observations from Experimental Results

From Figures. 2, 3, and 4, we can conclude that MCS is
the major factor in selecting threshold CPU clock frequency
of BBU in C-RAN. Even though the Conservative governor
is a dynamic governor, it does not scale down the CPU clock
frequency under reduced traffic load. Using the measurements
from Fig. 4, the power consumption can be fitted as a function
of CPU frequency and percentage of PRBs used.

POWER = α ∗MCS + β ∗ PRBs+ γ (1)

Where α, β, and γ are constants that can be calculated from
offline profiling. γ is the static power consumed by C-RAN.
Eqn. 1 can be generalised for users U ε {1, 2, 3 . . . n}.

POWER =

n∑
i=1

(α ∗MCSi + β ∗ PRBsi) + c (2)

Where MCSi is the MCS value and PRBsi is the percentage
of PRBs used by user i who is scheduled in a TTI by the
MAC scheduler. From Fig. 2, it can be concluded that CPU
frequency setting at the BBU is a function of MCS.

CPUfreq ∝MCS (3)

This means if multiple users exist in a scheduling interval or
TTI, the clock frequency that needs to be set is decided based
upon the highest MCS present. From the above equations, to
minimize energy in every scheduling interval, the value of
highest MCS used needs to be minimized.

τ : min POWER

: min

n∑
i=1

(α ∗MCSi + β ∗ PRBsi) + c

: min {MAXiεU (MCSi)}

(4)

s.t.

n∑
i=1

PRBsi ≤ PRBsmax (5)

Here, PRBsmax is the maximum number of PRBs available
for a given bandwidth. Although reducing the MCS consumes
more PRBs, the CPU clock frequency is reduced and set to
the threshold CPU clock frequency to ensure energy reduction.
Similar energy reduction is possible even when the system is
running different functional split architectures of C-RAN.

A significant side benefit of reducing MCS is that it can
help in reducing the fronthaul bandwidth requirements if used
with modulation fronthaul compression. Supported by O-RAN
alliance, the modulation compression technique [9] is a type
of lossless compression technique that can be applied to I/Q
data symbols prior to encoding them into several bits of length
W called bit-width. Given some modulation point to code, this
strategy seeks to minimise the bit-width in order to reduce the
fronthaul bandwidth requirements. If no compression is used,
then bit-width is generally fixed at W = 32 bits for both
I and Q samples, regardless of the modulation order used.
However, by using modulation compression, the bit-width can
be dynamically selected according to highest modulation order
used in the scheduling interval, thus reducing the bandwidth
requirements over the fronthaul link between BBU and RRH.

IV. PROPOSED COMPUTE RESOURCE TUNING ALGORITHM

In this section, based on the key observations made from
the motivational results shown in the previous section, we
propose a novel greedy algorithm (Algorithm 1) called Com-
pute Resource Tuning (CRT). It is intended to work with any
MAC scheduling scheme and does not hinder any schedul-
ing decision regarding user selection or system throughput.
Besides, it does not modify any power-saving measures such
as discontinuous transmission (DRX). From the experimental
study and related work, it is well known that transmitting for
users with a higher MCS requires higher CPU clock frequency
to finish the radio packet processing in time. Higher MCS does

Algorithm 1: CRT: Compute Resource Tuning Algo-
rithm
Get scheduling decision from MAC scheduler for the

next TTI
Ulist = list of users scheduled in the next TTI
while all PRBs are not utilized and Ulist is not empty

do
u = select user with highest MCS from Ulist
u.MCS = u.MCS − 1
if remaining PRBs are enough to schedule u with

the new u.MCS in the next TTI then
update the remaining PRBs

else
u.MCS= u.MCS + 1 and
exit the while loop

end
end
Set Threshold CPU clock frequency for the highest
available MCS in the next TTI using the
Userspace Governor.

offer more bits per symbol, thereby increasing user throughput.
However, from various studies on traffic variations in cellular
networks, it is well established that each cell does not face
peak traffic all the time. The CRT algorithm considers this fact
and tries to minimize the highest MCS used by consuming
all the available PRBs in each scheduling interval or TTI.
If all the PRBs are not utilized at the end of scheduling
decision by the MAC scheduler, CRT algorithm kicks in and it
opportunistically selects the user with the highest MCS from
the list of scheduled users and reduces its MCS value until
all the PRBs are allocated. As a result of this procedure, the
CPU frequency of BBU in C-RAN could be scaled down to
reduce the energy consumed by the C-RAN system, without
any impact on throughput and delay of the scheduled users.

A. Time Complexity Analysis

The algorithm iterates over a list of scheduled users. Each
user can be selected maximum 28 times for MCS reduction.
Selecting a user with highest MCS will take O(log u) time
if heap is used to store the scheduled users. Thus, the time
complexity of this algorithm is O(28∗log u∗u) or O(u log u),
where u is the number of scheduled users in a TTI. Moreover,
the CRT algorithm considers the users selected by the sched-
uler for the next scheduling interval and not the total number
of users currently served by the cell. This keeps the value u
low due to which the overall run time of the MAC scheduler
does not change much.

V. SIMULATION ENVIRONMENT AND PARAMETERS

The proposed CRT algorithm is implemented on the LTE
module available in NS-3 simulator [10] which provides
various MAC schedulers. NS-3 implements the Femto Forum
MAC Scheduler Interface [FFAPI] as a set of C++ abstract
classes; in particular, each primitive is translated to a C++
method of a given class. CRT algorithm is implemented on
top of existing NS-3 MAC scheduler class. Furthermore, the
existing NS-3 LTE scheduler is modified to report MCS
and PRBs used in each TTI. These values are then used to
calculate the energy consumed in offline using the results
shown in Section III. In this paper, we considered NS-3’s
Proportional Fair (PF) as the MAC scheduler. The simulation
parameters are given in Table II. As the algorithm focuses on
downlink scheduling, no uplink transmissions were performed.
To reduce the complexity of the simulation, HARQ is disabled.
To change the load on the eNodeB, the number of UEs is
varied from 1 to 30. Each UE receives a packet of random
size between 1000 and 1400 bytes with a packet inter-arrival
interval of 10 ms. This generates on average 1 Mbps traffic
per UE from the eNodeB.

VI. SIMULATION RESULTS

A. Distribution of MCS Used in eNodeB

The CRT algorithm attempts to reduce the MCS used in
every TTI during non peak-hours. Fig. 6 shows how the
algorithm performs for 5 users. The users are served using
MCS 28 for 60% of the TTIs while running PF as the MAC

TABLE II: Simulation Parameters

Parameter Value
Channel Bandwidth 10 MHz

Transmission Time Interval 1 ms
Number of eNBs 1

eNB’s Transmit Power 30 dBm
Number of UEs 1 to 30 (variable)

UE’s Transmit Power 10 dBm
Packet Size Random between 1000 and 1400 bytes

Interarrival Rate 10 ms
Traffic Type UDP

User Mobility Random2dWalk at 20km/h
Simulation Time 20 seconds

scheduler. But, users are served with MCS 14 for 60% of the
TTIs when CRT is applied on PF’s schedule. This is because
enough traffic is not available to consume all the available
PRBs in each TTI with only 5 users and therefore CRT
algorithm is able to reduce the MCS.

PF with 5 Users
3%

12%

8%

11%

6%

60%

PF with CRT for 5 Users

20%

60%

20%

MCS 12

MCS 13

MCS 14

MCS 18

MCS 20

MCS 22

MCS 24

MCS 26

MCS 28

Fig. 6: Distribution of MCS selected with and without CRT

B. Reduction in Energy Consumption

To assess the CRT algorithm’s performance on the energy
front, it is compared with NS-3’s PF scheduler with Linux
scaling governors as shown in Fig. 7. It is also compared
when the PF runs with threshold frequencies. The results
are shown with a confidence interval of 95%. To calculate
the energy consumption for each scenario, first, scheduling
information for each TTI is taken from NS-3 simulations
which is then used to calculate energy consumption using
Eqn. 2 and its constants are calculated using profiling results
from Section III. It is shown that the PF with Performance
governor consumes the highest energy because it always runs
the system at the peak available frequency i.e., 3.6 GHz.
Conservative governor performs better than Performance gov-
ernor as it reduces the CPU frequency depending on the load.
PF running on threshold frequencies consumes less energy
than when PF is used with the two scaling governors. In all
the above scenarios, the user scheduling was identical. The
difference was seen only in the energy consumed due to the

variation in CPU clock frequency of the system in different
cases. PF with CRT algorithm consumes the least amount of
energy amongst all. This is because it reduces MCS used and
consumes all the PRBs when the traffic load is low. Only at
the peak traffic does its energy meet the energy consumption
of NS-3’s PF running at threshold frequencies. At peak traffic
(i.e., 30 users) CRT algorithm is able to reduce the energy
consumption by 20% and at low traffic (i.e., 1 user) by 40%
when compared with the Conservative governor. On average
25% reduction in energy is observed.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30

E
n
e
rg

y
 (

Jo
u
le

s)

Users

PF with CRT
PF with threshold frequencies

PF with Conservative frequency scaling
PF with Performance frequency scaling

Fig. 7: Energy Consumption by Different Variants of PF
scheduler.

C. Fronthaul Capacity Reduction with Fronthaul Modulation
Compression

The CRT algorithm complements the modulation compres-
sion technique because it reduces the MCS value thereby
reducing the modulation order. In essence, if the CRT algo-
rithm is used along with modulation compression, the required
fronthaul capacity will be reduced. Fig. 8 gives the required
fronthaul capacity for PF with and without CRT. O-RAN
supports split option 7.2 for fronthaul and its capacity can
be calculated using Eqn. 6.

FH = NSC ∗Nsymb ∗W ∗NL ∗ 1000 +MACinfo (6)

Where Nsc is the number of subcarrier/PRBs, Nsymb is the

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

A
v
e
ra

g
e
 F

ro
n
th

a
u
l
R
e
q
u
ir
e
d
(M

b
p
s)

Users

PF with CRT and Modulation FH Compression
PF with Modulation FH Compression

PF with no Fronthaul Compression

Fig. 8: Average Fronthaul Requirement by Different Tech-
niques

number of symbols in 1 ms, W is bit-width (number of IQ
bits), and NL is the number of layers. For our simulations,
Nsc is 12, Nsymb is 14× 50 = 700 symbols (for 50 PRBs)
and NL as 1. The value of W depends on the modulation
order i.e., on the MCS used. MCS values used in every
TTI are taken from the NS-3 simulation. Fig. 8 shows the
average fronthaul bandwidth used. CRT algorithm under low
traffic can reduce the fronthaul requirement as it reduces the
maximum modulation order used. On an average the fronthaul
requirement is reduced by 80% when modulation fronthaul
compression is used compared to no compression. This is
another saving that can be gained by using the proposed CRT
algorithm with any MAC scheduler in C-RAN.

VII. CONCLUSIONS

In this paper, we profiled the energy consumption in C-
RANs using a small scale testbed and determined the limita-
tions of Linux frequency governors. We identified that there is
a threshold CPU clock frequency for each MCS using which
energy consumption of baseband processing in the C-RAN
system can be reduced. Taking the advantage of frequency
scaling, we proposed a novel greedy-based CRT algorithm
which can work with any MAC scheduler. Additionally, the
CRT helps in reducing the fronthaul bandwidth requirements
if used with modulation fronthaul compression technique. The
insights drawn in this work could greatly help mobile operators
in reducing their OPEX by adaptively tuning various system
resources available in the BBU pool.

ACKNOWLEDGMENT

This work has been supported by the project “CCRAN:
Energy Efficiency in Converged Cloud Radio Next Generation
Access Network” funded by Intel India.

REFERENCES

[1] Cisco. Annual internet report (2018–2023) white paper.
[2] F. Héliot et al. Energy-efficient resource allocation for orthogonal multi-

antenna multi-carrier channel. In IEEE Online Conference on Green
Communications, 2013.

[3] L. Venturino et al. Energy-efficient scheduling and power allocation
in downlink ofdma networks with base station coordination. IEEE
Transactions on Wireless Communications, 2015.

[4] Sourjya Bhaumik, Shoban Preeth Chandrabose, Manjunath Kashyap
Jataprolu, Gautam Kumar, Anand Muralidhar, Paul Polakos, Vikram
Srinivasan, and Thomas Woo. Cloudiq: A framework for processing
base stations in a data center. ACM Mobicom, 2012.

[5] T. X. Tran et al. Understanding the computational requirements of
virtualized baseband units using a programmable cloud radio access
network testbed. In IEEE International Conference on Autonomic
Computing, 2017.

[6] U. Pawar, A. K. Singh, K. Malde, B. R. Tamma, and A. Antony Franklin.
Understanding energy consumption of cloud radio access networks: an
experimental study. In IEEE 3rd 5G World Forum Workshop, 2020.

[7] EURECOM. Openairinterface url:www.openairinterface.org/.
[8] Dominik Brodowski et. al. Cpu frequency and voltage scaling code

in the linux(tm) kernel url: www.kernel.org/doc/documentation/cpu-
freq/governors.txt.

[9] S. Lagén, L. Giupponi, A. Hansson, and X. Gelabert. Modulation
compression in next generation ran: Air interface and fronthaul trade-
offs. IEEE Communications Magazine, 2021.

[10] Network simulator url:https://www.nsnam.org.

