Prototyping and Load Balancing the Service Based Architecture of 5G Core using NFV

Vamshi Kiran Buyakar, Harsh Agarwal, Bheemarjuna Reddy Tamma, and Antony Franklin A

Indian Institute of Technology Hyderabad, India

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

IEEE NETSOFT 2019

5G: Service Based Architecture

Service-based representation using Service based interfaces (SBIs) for interaction in CP of 5G Core

- Client-Server Based Architecture
- Each NF is registered to a Central Repository Function (NRF)
- Stateless, Cacheable, Layered system Communication

The heavy bursts of signaling traffic in the 5G Core require it to be robust and scalat

- Explosive traffic demand from diverse verticals & massive # of IoT devices
- Heterogenous & dense deployment of cells
- It is necessary to implement a highly scalable and resilient architecture of the contro that can dynamically respond to any kind of network situation
- Cloud computing, SDN & NFV could offerectest tive and competitive architectural solutions for mobile operators as well

- In this work, we implement **BBA of 5** Core and deploy it in an NFV environment
- To reduce the communication latency and the load on the NFs, we use Google Remote Procedure Call (gRP,@)modern open-source RPC framework, instead of HTTP REST API as SBI
- We implement a distributed setup of the NRF for service registration and discovery, using Consul an open-source distributed & highly available service discovery/configuration system
- We propose using a **look-aside load balancen**stead of a proxy based load balancer to meet the high scalability and low latency requirements of the 5G control plane

- → Comparison of gRPC and REST
 - Protobuf vs. JSON
 - REST messages typically contain N objects
 - gRPC accepts and returns Protobuf messages
 - Protobuf is very efficient in terms of performance
 - HTTP/2 vs. HTTP 1.1
 - REST depends heavily on HTTP (usually HTTP 1.1) while the gRPC uses the newer HTTPp2otocol
 - HTTP/2 reduces RTT by multiplexing REQ/RES and minimizes overhead by compression of Headers

Benchmarking setup of gRPC and HTTP REST

- Client threads are set up which periodically query the two endpoints
- The average response time taken to query a request and CPU utilization of the server to serve the requests are measured by varying the number of clients.

Comparison of gRPC and REST

7

 \rightarrow Unmarshalling JSON is a computationally expensive task & HTTP 1.1 is less efficient, hence REST is performing poorly

Network Function Repository Function (NRF)

- NRF provides registration and discovery functionality so that the instances of network functions (NFs) can discover each other and communicate via APIs.
- The service registration and discovery procedures are followed as depicted in figure.

NRF implementation using Consul

- Consul server on a dedicated server node
- NF service producers and consumers are on separate server nodes with every node running a Consul client
- New NF Service Producer spawned, registers itself with Consul
- NF Service Consumer sends a service discovery request containing the type-ofservice to the Consul
- Consul server forwards apt instance of NF Service Producer to the NF Service Consumer

NFV Management and Orchestration

gRPC based 5G architecture aligned with-EIFSI [6] reference architecture

1. Evaluation of gRPC based 5G Core

Experimental Setup

			_			
Entity		Cores	F	RAM	OS	
Server Node		56	6	64GB Ubuntu 16		.10, 64 bit
	Parameter			Value		
	Number of UEs			10 to 700		
	Simulation time			120 Minutes		
	UE Data Transi	fer		Iperf3 - TCP Traffic		
	Virtualization platform			Docker		
	RAN & Core Simulator			gRPC5G [12]		
	Live status monitor		Ι	Prometheus 1.6.2		

In this experiment, only a single instance of each NF of 5G System is considered for processing UE traffic.

Evaluation of gRPC based 5G Core

→ Need for multiple instances of AMF/SMF/etc to distribute (balance) the load and thereby keep a check on latency and improve UE throughput

- Load balancing architectures
 - Proxy load balancing
 - simple to implement
 - works with untrusted clients
 - higher latency (since the LB is in the data path)
 - Client side load balancing
 - high performance (because of the elimination of an extra hop)
 - adds to the complexity of the client and adds a maintenance burden
 - clients must be trusted

- Hybridof clientside and proxy based balancing
- There is a special LB server called the Look Aside Load Balancer (LALB)
 - The clients query the LALB, and the LALB responds with the best server to use
 - The client then directly interacts with that backend server. The servers share the reports with the LALBs regularly.
 - Benefits
 - Clients can be untrusted
 - Low latency
 - Scalable

LALB Architecture for gRPC based 5G Core

Load Balancer Implementation Framework

2. Evaluation of Load Balancer

Entity	Core	RAM	OS
Server Node	56	64GB	Ubuntu 16.10, 64-bit

Parameter	Value		
Number of UEs	0 to 600		
Simulation time	350 Seconds		
Virtualization platform	Docker		
RAN & EPC Simulator	gRPC5G [10]		
Live status monitor	Prometheus 1.6.2		

- 1. Measuring the reduction of CP latency by increasing the number of AMF instances
- 2. Observinghe variation of CP latency with various load balancing schemes

Load variation over simulation time

- RAN simulator [10] generates continuous control signaling traffic to EPC.
- UE Arrival Rate is increased at every 50 sec
- UEs continuously perform attach, data transfer, and detach activities

- With multiple instances of AMF, it is observed there is much reduction in CP latency when compared to a single instance.
- This difference is mainly due to high concurrency rate provided by the multiple instances of AM F.

Control Plane Latency with various LB Schemes

- The CP latency for LCU is lesser than both RR and RD because in LCU the consumer accesses the currently least loaded AMF
- Hence the consumer's request faces very less contention in the AMF and is processed at a much faster rate.
- Therefore picking an appropriate loadbalancing policy plays a vital role in building a scalable SBA for 5GC.

- We designed and implemented a gRPC based 5G Core architecture to handle huge signaling overhead in mobile networks. We used Consul for realization of NRF.
- We proposed a Look Aside Load Balancer (LALB) which suits the Service Based Architecture of 5G
- We evaluated our LALB with various load balancing algorithms
 - Experimental results suggest that carefully chosen load balancing algorithms ca significantly lessen the control plane latency when compared to simple random roundrobin schemes

[1] 5G System Architecture 3GPP TS 23.501 and TS 23.502 [2] gRPCh(ttps://grpc.io/) [3] HTTP REShtt(ps://restfulapi.net) [4] Consulh(ttps://www.consul.io)/ [5] Look aside load balancing [6] "ETSINFV http://www.etsi.org/technologies/usters/technologies/nfv [7]<u>REST versus gRPC Compa</u>rison [8] Proxy Load Balancing [9] Client side Load Balancing [10] gRPC based Service Based Architecture fottos/(github.com/sipian/5@oregRPC) **SBA**

This work is partially supported by the projects "Visvesvaraya PhD Scheme" and "Converged Cloud Communication Technologies", MeitY, Govt. of India.

Ministry of Electronics & Information Technology

Government of India

THANK YOU!

Queries ?

Email: tbr@iith.ac.in Homepage: http://www.iith.ac.in/~tbr Google Scholar Profile: http://goo.gl/JdgRB NeWS Lab: https://newslab.iith.ac.in/

- Comparison of gRPC and REST
 - Messages vs. Resources and Verbs
 - REST does n't just use HTTP as a transport, but embraces all its features a builds a consistent conceptual framework on top of it.
 - It is actually quite challenging to map business logic and operations int strict REST world.
 - The conceptual model used by gRPC is to have services with clear interfac structured messages for requests and responses.
 - It allows gRPC to automatically generate client libraries.