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remapping of CU-DU must be minimized and should

happen in a predefined mapping interval.

Objectives 1 and 2 can be achieved by formulating an

efficient DU-CU mapping scheme. But for Objective 3, ac-

curate modeling and prediction of DU traffic are required. By

knowing the future traffic information, the mapping scheme

can map the DUs to CU by considering current and future

traffic requirements, minimizing the frequent remapping. An-

other way to achieve Objective 3 is reserving the resources,

so that server assigned to clusters never gets overloaded. In

this paper, we propose a predictive clustering framework that

uses traffic prediction for clustering, due to which the servers

never get overloaded during the assigned remapping interval

without any additional resource reservation. This reduces the

number of active servers at the same time and ensures that the

assigned servers are not overloaded.
II. OVERVIEW OF PROACTIVE CLUSTERING FRAMEWORK

In this section, we present the overview of our proposed

proactive clustering framework, as shown in Fig. 2. The first

phase is Traffic Prediction Phase, where we process the raw

data and analyze the spatial and temporal correlations using

big-data techniques, which includes studying different types of

cell sites based on locality and day-night traffic differences. We

use the deep-learning-based ConvLSTM model to accurately

predict the DU traffic by learning the spatial and temporal

dependencies simultaneously. The second phase is DU-CU

Mapping Phase, where we take the predicted traffic from

Phase 1 as an input and then formulate an unsupervised-

learning-based mapping algorithm to accurately map DUs

to CUs, considering all the global CU pool and resource

constraints in mind. We represent the location of DUs as a

set of data points on a graph, marking instantaneous DU load

as the weight of each graph node. The final output of the

framework is a set of clusters represented by different colors

and markers, as shown in Fig. 2, where each cluster is served

by its CU. The proposed framework ensures low operational

costs and high service quality by minimizing the total number

of clusters and mapping DUs with high handover probabilities

to the same CU, respectively. In sections III and IV, we discuss

each phase in more detail.
III. DU TRAFFIC PREDICTION PHASE

The objective of this phase is to predict the traffic on

each DU by using deep learning-based algorithms. Traffic

prediction is not trivial due to the presence of high temporal

and spatial dependencies among the base stations. Traditional

prediction methods use time series models to predict future

traffic, which fails to capture the temporal and spatial corre-

lations in the data, thus affecting the accurate prediction of

network traffic. Therefore, in this section, we propose to use a

deep learning-based ConvLSTM model in C-RAN architecture

to capture the hidden temporal and spatial dependencies using

a real-world dataset and predict future traffic accurately.

1) ConvLSTM Model: ConvLSTM model is a combination

of both - CNN (Convolutional Neural Networks) and LSTM

(Long Short Term Memory Networks). CNN is a deep learning

architecture, most commonly used in visual computing, such

as image processing, to capture the spatial dependencies [3].

However, it fails to completely learn the temporal dependen-

cies in the data due to a lack of memory states that can re-

member previous time intervals. LSTM on the other hand is a

Recurrent Neural Networks (RNN) based architecture capable

of learning long-term temporal dependencies [4]. LSTMs can

connect previous cell information to the present cell using

memory states in the form of feedback loops, thus allowing

data to persist. The default behavior of LSTM to remember

the previous time intervals makes it well suited for mobile

traffic forecasting problems to learn the temporal behavior

of the data. LSTMs can determine the temporal correlation

in the data, but they fail to learn the spatial correlation with

neighboring cells, which is a key characteristic of multi-cell

traffic data. The ConvLSTM is a variant of LSTM containing

a convolution operation inside the LSTM architecture. In such

an architecture, LSTM network learns the temporal features,

while CNN learns the spatial features, resulting in a better

prediction accuracy. The architecture of ConvLSTM model is

shown in Fig. 3.

2) Working of ConvLSTM Model: The experimental data is

divided into two parts, training data and test data. The training

data is used to train the model and the test data is used to

evaluate the accuracy of the trained model. Out of a two-month

dataset available to us, seven weeks of data is used for training

the ConvLSTM model and last week’s data is used to test the

performance of the trained model. The input is in the form of

a 5D tensor with shape (samples, timesteps, channels, rows,

cols) where samples represents the total count of input samples

sent to the LSTM network, timesteps represents the total num-
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ber of previous time intervals based on which prediction will

be made, and features represents the number of dimensions,

i.e., the number of DUs in our case, rows, columns represents

the height and width of the convolutional input matrix, and

channels represents the depth of each sample point. The

original input matrix D is restructured to 5D tensor shape and

fed to the ConvLSTM model using the input layer. The data

then passes through convolutional layers, where multiple filters

(or kernels) of different heights and widths slide over the input

data to create new feature maps. The obtained feature maps

further pass through a max pooling layer, where we select the

maximum element from a kernel region such that the feature

maps contain only the most prominent features. By this stage,

the model has already captured the spatial dependencies in

the data using CNN feature maps. There onwards, the output

obtained from the pooling layers is given as input to LSTM

networks where multiple hidden LSTM layers learn the long-

term temporal dependencies from the sequence. The output

from LSTM cells is passed through a fully connected layer to

reduce the dimensions and flatten the sequence data. Finally,

the output layer receives the final predicted values from the

model.

IV. DU-CU MAPPING PHASE

The objective of this phase is to design an efficient DU-CU

mapping scheme that minimizes the number of active CUs and

improves the service quality, given the predicted traffic and

pool constraints. We formulate the problem as a bin-packing

problem [5], where the objective is to pack items (DU loads)

with different weights into a finite set of bins (CUs) such

that the minimum number of bins are used. In computational

complexity, the bin-packing problem is already proven to be

NP-hard [6]. Hence, to reduce the computational complexity of

the optimization problem, we devise a near-optimal heuristic

approach efficiently to map DUs to CUs which is inspired

by our previous work [2]. We use an unsupervised-learning

based approach to divide the set of DUs into several clusters

based on a assignment score, where each cluster is served by

its own CU, considering the CU pool resource constraints.

A. Optimization Model

Consider D = {d1, d2, . . . , dn} as the finite set of DUs and

C = {c1, c2, . . . , cm} as the finite set of CUs in CU pool. Since

we can map multiple DUs to a same CU, we have | D |≥| C |.

Let, C
′

be the finite capacity of all the CUs. The load on each

DU d ∈ D is denoted by ld. Further, the association between

DU d ∈ D and CU c ∈ C can be represented as a binary

variable.

xdc =

{

1, if DU d is mapped to CU c

0, otherwise

Since all the CUs may not be active at the same time, we

define a binary variable.

yc =

{

1, if CU c is active

0, otherwise

1) Handover Probability: Let, G be a distance matrix where

each entry Gij represents the euclidean distance between DU

di and DU dj . We define the normalized distance G′(i) for

each DU di from all other DUs dj s.t. j∈ Gi,∗,

G′(i) = (max(Gi,∗) + 1)− Gij (1)

The handover probability Pij of a user moving from the

coverage of DU di to the coverage of dj s.t. j∈ Gi,∗ can be

obtained as,

Pij =
G′(i)

D∑

j=1

G′(i)

(2)

To ensure better service quality, we map the DUs with

higher handover probabilities to the same CU. Let, at times-

tamp t, UE1 and UE2 are served by DU d1 and DU d2,

respectively. Both d1 and d2 are mapped to the same CU, i.e.,

CU1. Further, we assume that handover probability P12 > P13

and P23 > P21. Therefore, at timestamp t + 1, UE1 will

move from the coverage of DU d1 to the coverage of DU d2.

Similarly, UE2 will move to the coverage of DU d3. In such

a scenario, UE1 will not encounter a handover as both d1 and

d2 are mapped to the same CU, whereas UE2 will encounter

a handover as it is moving to DU d3 which is mapped to a

different CU. However, in a traditional mobile network, both

UE1 and UE2 will encounter the handover.

2) Problem Formulation: The notation used in formulation

of optimization are shown in Table I.

Objective Function:

min
y,z

:

C∑

c=1

yc

︸ ︷︷ ︸

(A)

×
1

∑

∀i,j∈c

Pij

︸ ︷︷ ︸

(B)

) (3)

Constraints:

D∑

d=1

(xdc × ld) ≤ (C
′

× yc), ∀c ∈ C (4)

C∑

c=1

xdc = 1, ∀d ∈ D (5)



xdc ∈ {0, 1}, ∀d ∈ D, ∀c ∈ C (6)

yc ∈ {0, 1}, ∀c ∈ C (7)

Term A minimizes the total number of active CUs in the

CU pool. Term B ensures the service quality by mapping DUs

with higher handover probability to the same CU. Eqn. (4)

ensures that the sum of DU loads mapped to a CU should not

exceed the CU’s total capacity. Eqn. (5) ensures that a DU is

assigned to only one CU. Eqns. (6-7) indicate that xdc and yc
are boolean variables.

B. Proposed Heuristic Algorithm

We model the DU-CU mapping problem as an unsuper-

vised learning problem, where we represent the geographical

location of DUs as a set of data points on a graph. We then

divide the data points into multiple clusters of DUs, where

each cluster is served by a dedicated CU, considering the

resource constraints in the CU pool.

The description of the heuristic algorithm is as follows:

Let M be the matrix containing coordinates of the DUs, P be

the matrix representing handover probability between DUs,

and L be a vector containing predicted load on all the DUs.

For simplicity, we assume that the handover probability Pij

is already computed by the mobile operator based on the

geographical location of DUs. The notation used in designing

the heuristic algorithm is listed in Table II. The key steps

involved in the heuristic algorithm are listed below.

1) Calculate the minimum number of active servers required

(Line 1). Let, Li be the predicted load on DU i and C ′ be

the finite server capacity. We define K as the minimum

number of CUs required,

K =

D∑

i=1

Li

C ′
(8)

TABLE I
NOTATION USED IN THE OPTIMIZATION MODEL

Notation Definition

ld Compute load at DU d ∈ D

D Finite set of DUs

C Finite set of CUs

C′ Capacity of CU c ∈ C

yc 1 if CU c ∈ C is active; otherwise 0

xdc 1 if DU d is mapped to CU c; otherwise 0

Pij Handover Probability of a user moving from DU di to dj

TABLE II
NOTATION USED IN THE HEURISTIC ALGORITHM

Notation Definition

M Matrix with coordinates of all the DUs

L Vector of predicted load on all the DUs

C′ Capacity of CU c ∈ C

D Finite set of DUs

C Finite set of CUs

Pij Probability of a user moving from DU di to dj
K Number of CUs

assignment scoreij Assignment score of a DU i with a centroid j

Xi, Yi Centroid coordinates of cluster i

2) After selecting the minimum number of servers required,

we identify the K initial cluster centroids based on

decreasing order of load (Line 2). A cluster centroid is

defined as the average of all the points mapped to that

cluster.

3) Sort the DU loads in decreasing order so that the larger

loads are assigned to the CUs first, and the DUs with

smaller loads can be packed easily in other CUs (Line 3).

If smaller DU loads are mapped first, the number of active

servers may not be optimal because the larger DU loads

may lead to the formation of additional servers.

4) For each unassigned DU, we calculate the assign-

ment score of that DU with all the cluster centroids

(Lines 6-8). The assignment score between a DU i ∈ D
and a cluster centroid j can be calculated as,

assignment scoreij = Li ∗ Pij (9)

where Li is the load on DU i and Pij is the handover

probability between DU i and cluster j.

The assignment score is a combination of both load and

handover probability. If DUs are mapped based on the

load alone, ensuring service quality is challenging as we

are not mapping DUs with a higher handover probability

to the same CU.

5) Assign DU to a cluster with highest assignment score

(Lines 9-11). If it cannot be assigned, map DU to cluster

with next nearest assignment score (Lines 12-15).

6) If none of clusters can can accommodate the DU, ini-

tialize a new cluster and assign the DU to that cluster

(Lines 16-19).

7) Once all the DU loads are mapped to the CUs, we will

calculate the new centroids for all the clusters (Line 21).

Let, (x1, y1), (x2, y2) . . . (xn, yn) be the coordinates of

DUs mapped to a cluster. For each cluster i, we calculate

the centroid (Xi, Yi) as,

Xi =

n∑

i=1

xi

|n|
and Yi =

n∑

i=1

yi

|n|
(10)

8) Repeat steps 1 to 7 until centroids and clusters are

changing.

1) Time Complexity Analysis of the Heuristic Algorithm:

Consider |C| as the number of CUs and |D| as the number of

DU loads that we want to assign. For simplicity, we assume

the handover probabilities are pre-computed by the operators.

We can calculate the total number of initial K clusters required

in O(1) time using Eqn. 8. To minimize the number of active

clusters formed, we need to sort the DU in decreasing order

of load. This can be done in O(|D|log|D|) in the worst case.

In each iteration, we calculate the assignment score of all the

DUs with K clusters (where K << D) in O(|DK|) time.

For each DU, we need to find the cluster with maximum as-

signment score. This requires an additional time of O(|DK|).
Lastly, the centroids can be updated in O(1) using Eqn. 10.

Combining all the times, the overall time complexity of the



Algorithm 1: Proposed DU-CU Mapping Algorithm.

Input : Coordinate Matrix (M), Handover Probability

matrix (P), Predicted Load (L), Server

capacity (C ′)

Output: Best possible DU-CU mapping at time

epoch t+ 1.

1 K =

D∑

i=1

Li

C′
;

2 Initialise K cluster centroids from M in decreasing

order of load and store in a list T ;

3 Sort the DUs in decreasing order of load Li;

4 while not converged do

5 for each DU i ∈ D do

6 for each centroid j in T do

7 assignment scoreij = Li ∗ Pij ;

8 end

9 if DU i can be assigned to cluster j with

max(assignment score) then

10 Assign DU i to cluster j;

11 C ′
j = C ′

j − Li;

12 else

13 Assign DU i to next best cluster j ;

14 C ′
j = C ′

j − Li;

15 end

16 if DU i cannot be assigned to any cluster j

then

17 Create a new cluster n and assign i to n;

18 Add n to T ;

19 end

20 end

21 Update the centroids;

22 end

proposed heuristic algorithm in the worst case is O(|D|log|D|)
and thus can be solved in polynomial time.

V. PERFORMANCE EVALUATION

A. Evaluation of Prediction Phase

1) Dataset Description: In this work, we use one of the

richest telecom datasets ever released by Telecom Italia in

2015 [7]. Originally, the dataset was released as a part of

”Big Data Challenge” organized by the Telecom Italia. Later,

the dataset was made publically available to the research

communities. The dataset contains the time series data of

cellular traffic observed after every 10-minute intervals, for

the city of Milan, collected for two months, i.e., 1st November

2014 - 31st December 2014. The city of Milan is divided into

a grid of 100x100 squares (235m x 235m each), and each

square is referred to as a ”cell.” The dataset is anonymized

and is aggregated in terms of Call Detail Records (CDRs).

Whenever a user engages in a call, SMS, or internet, a new

CDR is generated. For each cell in the dataset, we know,

• Square id: unique identification of each cell.

• Country code: code of country whose data is collected.
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• Time Interval: start interval time in milliseconds.

• SMS-in and SMS-out: number of SMS received or sent

from the cell during the time interval.

• Call-in and Call-out: number of calls received or made

from the cell during the time interval.

• Internet traffic: number of internet traffic CDRs generated

inside a cell during the time interval.

As a large portion of data is composed of only Internet

traffic, we focus only on the Internet traffic prediction in this

work.

2) Key Observations: Temporal Domain: Fig. 4 shows the

temporal variation of Internet traffic throughout a week for one

of the famous universities in the city of Milan, i.e., Bocconi

University, denoted by square id 4259. It can be seen from the

figure that the traffic follows a strong diurnal pattern; e.g., the

traffic volume during weekdays is much higher than on the

weekends. Similarly, the traffic generated during office hours

is higher than in evening hours when people start returning to

their homes from the university.

Spatial Domain: To understand the spatial behavior of data,

we compare the traffic of two contrasting areas in the city of

Milan. The first one is the same university mentioned above,

i.e., Bocconi University with cell id 4259 and the second one is

the famous nightlife places in the city, Navigli district, denoted

by square id 4456. Figs. 4 and 5 shows that both the areas

observe spatially different traffic patterns. As expected, traffic

volume starts to increase at Navigli District during the evening

as compared to Boconni, where traffic starts to drop off during

the evening. Also, the total traffic generated during a day is

much higher at Navigli District as it is located in the center of

the city. It can also be observed that traffic at Navigli District

remains the same throughout the week, whereas the traffic

at Bocconi drops during weekends. Such a spatio-temporal

behavior among different cells located at different places

makes it very challenging to predict future traffic correctly.

Therefore, efficient techniques must be devised to capture

the spatial and temporal behavior of traffic and enhance the

prediction engine.

3) Data Pre-processing: In the dataset provided by Tele-

com Italia, the data of each day was stored in a separate

file. Each file contained traffic information (square id, country

code, SMS-in/out, calls-in/out, and Internet) for all the square

ids on that particular day in intervals of 10 minutes. As

mentioned earlier in §V-A, we consider only Internet traffic

prediction in this work. Hence, all the files were parsed, and

the Internet traffic of all the cells is extracted and stored
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in a single data frame D using pandas library of python.

Data frame is a matrix representation of the data with T*C

dimensions where t represents the total time steps separated

by 10-minute intervals for two months, and C represents the

total number of DUs, i.e., cells. Each entry Dtc represents the

internet traffic of cth cell at tth timestep.

4) Experimental Setup : The experimental data is divided

into two parts, training data and testing data. Training data is

used to train the model and testing data is used to evaluate

the accuracy of the trained model. Out of a two-month dataset

available to us, seven weeks of data is used for training the

ConvLSTM model and last week’s data is used to test the

performance of the trained model. We convert the input data

frame D into a 5D tensor of shape (samples, time steps,

channels, rows, cols). For training the model, we use 6626

samples where each sample contains 144 previous time steps.

The value of channels and rows is considered as one since we

convolve each sample point independently. The total number

of DUs or the number of cols in our model is 100.

5) Parameters and Model Training: Below we discuss all

the key parameters used in our ConvLSTM model.

• Filters: The number of filters used in the convolution

process.

• Kernel Size: It defines the height and width of the

convolution window.

• Activation Function: It is a function that is used for non-

linear transformation of the input data.

• Optimizer: It changes the weights and learning rate of a

neural network such that the loss functional is minimized.

We use the famous tensflow library to train all the three

models for 100 epochs using sequential ConvLSTM model

with 100 filters and a kernel size of (1*2). To transform the

input sequence to a non-linear space, we use Relu as the

activation function. Further, to optimize the loss function we

use the famous adam optimizer.

6) Baseline Methods: We compare the performance of the

ConvLSTM model with the following two baseline models,

1) Convolutional Neural Networks (CNNs)

2) Long Short Term Memory Networks (LSTMs)

7) Evaluation Metrics: We evaluate the performance of

cellular traffic prediction based on two metrics: Mean Abso-

lute Percentage Error (MAPE) and Root Mean Square Error

(RMSE).

MAPE =
1

n

n∑

i=1

∣
∣
∣
∣

Ai − Pi

Ai

∣
∣
∣
∣

(11)

RMSE =

√

1

n
Σn

i=1

(

Ai − Pi

)2

(12)

where n is the total number of sample points, Ai is the actual

value, and Pi is the predicted value.

8) Performance Analysis: The ConvLSTM model achieves

an RMSE of 50.56 which is 10% and 26% less than the

baseline methods LSTM and CNN, respectively. Further, when

compared using MAPE, the ConvLSTM model achieves a

prediction error of 9.86 which again outperforms the baseline

LSTM and CNN by 4% and 36%, respectively. The main focus

of the LSTM model is to remember the previous information

by its design and hence it fails to capture the spatial depen-

dency while CNN fails to learn the temporal dependencies

due to a lack of memory states that can remember previous

time intervals. In the case of ConvLSTM model, we use a

combination of both CNN and RNN which simultaneously

learns both temporal and spatial dependency, and hence a

better prediction accuracy is achieved.

Figs. 6 and 7 shows the forecasting results for the cell IDs

4259 and 4456, respectively. The selected areas show very

different behavioral patterns. As expected, Navigli district has

high Internet traffic during the night and Bocconi has less

Internet traffic during the weekends. The results clearly show

that the ConvLSTM model can capture the hidden correlations

from the cells with different behavioral patterns and predict

future traffic with high accuracy.

B. Evaluation of Mapping Phase

In this section, we evaluate the performance of our proposed

heuristic algorithm with the optimization model.
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1) Experimental Setup: At time instance t, the predicted

traffic on all the DUs is given as input to mapping phase so

that an efficient mapping of DUs can be obtained at the next

time interval. The predicted load is normalized in a range

of [0 1] and the fixed capacity of each CU is considered

as 1. We represent DU coordinates as a set of data points

over a specific geographical region, maintaining their spatial

dependency. Since the location of DUs is not available in the

dataset, we use tools from point process models and stochastic

geometry to geographically distribute the DUs. As an example,

we highlight the distribution of 100 DUs and 500 UEs over

a 30km ∗ 30km region in Fig. 8. We use the Matern Hard

Core Point Process type II (MHCPP II) and Poisson Point

Process (PPP) model for the deployment of DUs and UEs,

respectively. Further, to highlight the coverage regions of a

DU, we use Voronoi Tessellation. We assume there is a 1:1

mapping between the DUs considered in the prediction phase

and the DUs generated here using MHCPP II. In real-world

scenarios, however, operators will have the exact location of

the DUs in their dataset (unlike the dataset used in this paper).

In a simulation duration of 24 hours, we consider a total of 144

iterations separated in intervals of 10 minutes. To implement

the optimization model, we use the ILP solver called “Gurobi,”

executing four concurrent threads in an Intel Xeon E5620, 3.4

GHz machine running GAMS Version 24 and 64-bit Windows

7.

2) Evaluation Metrics: For comparing the performance of

our optimization model and heuristic algorithm, the following

metrics are considered,

(i) Total number of active CUs - In each iteration, we count

the total number of CUs required to map all the DUs

efficiently.

(ii) Total fragmentation loss - We evaluate the packing

efficiency of the proposed heuristic algorithm in terms

of total fragmentation (space wastage) occurring in each

cluster. Let K be the total number of clusters formed,

C ′ be the fixed capacity of each cluster, and Ui be the

total capacity used by the mapped DUs in cluster i. We

define, fragmentation F as,

F =

K ∗ C ′ −
K∑

i=1

Ui

C ′
(13)

(iii) Total number of handover - In each iteration, we

calculate the total number of handover events occurring

for all the 100 DUs.

3) Performance Analysis : In Fig. 9, we show the total num-

ber of CUs used in each iteration by the heuristic algorithm

and the optimization model. We observe that the heuristic

performs closely with the optimization model. However, due

to its greedy nature, the heuristic slightly overestimates the

total number of CUs by 2.5% over all the 144 iterations.

In Fig. 10, we compare the performance based on the

packing efficiency of each cluster. Compared to the opti-

mization model, the heuristic algorithm has slightly higher

fragmentation. More specifically, the proposed heuristic has

28% high fragmentation than the optimization over all the

144 iterations. Due to the more number of active CUs in the

heuristic algorithm, some of the clusters are not tightly packed

and hence we observe a slightly high fragmentation loss.

In Fig. 11, we show the total number of handovers occurring

in each iteration for all the 100 DUs. We observe that the

heuristic algorithm has a 13% higher number of handovers

than the optimization model.

VI. REACTIVE VS PROACTIVE CLUSTERING TECHNIQUES

In the previous section, we showed how a deep learning-

based model is used to get an accurate traffic forecast of

100 cells. We also proposed a DU-CU mapping algorithm that

can cluster the DU’s inside a CU pool, such that the number of

active CUs is reduced without much fragmentation loss. In this

section, we present how the traffic prediction can be further

used to reduce the number of active servers, by comparing the

proposed proactive learning-based mapping technique with the

standard reactive learning-based approach.

A. Reactive clustering

Since internet traffic is dynamic and bursty, the VMs hosting

peak DU loads can overburden the CU resources, which

could easily lead to user throughput reduction. Such issues

could easily be avoided with a reactive approach. In Reactive

clustering, a new server (or a VM) could be instantiated based

on certain policies. One such example of a policy is CPU load,

where a new VM is initiated as soon as the CPU load reaches a

certain threshold. Thus, the servers will never get overloaded,

preventing the loss of QoS for the UEs. However, the reactive

approach could lead to inefficient usage of resources because

of resource reservations. The threshold value of each server

determines how many resources are to be reserved.





literature, but most of them require prior knowledge of DU

traffic profiles.

B. Mobile Traffic Prediction

1) Time Series Based Prediction: To understand and predict

network traffic, several time series models have been proposed

in the literature. Prediction techniques such as Auto-Regressive

Integrated Moving Average (ARIMA) [12] and Exponential

Smoothing [13] use linear regression techniques to predict

the time series data. Fengli et al. used the ARIMA model

to predict the data traffic for 9000 base stations in the state

of Shanghai [14]. Similarly, authors in [15] use an exponen-

tial smoothing scheme for traffic prediction in GSM/GPRS

networks. Authors in [16] improve the time series prediction

accuracy by identifying strongly correlated regions and feeding

them together to ARIMA models. Such regression and moving

average techniques have been widely used for decades. How-

ever, they can only be used to model a single DU and fail

to capture the spatial correlations [17]. When dealing with

C-RAN architecture, the model should predict the traffic for

a whole city-wide network simultaneously. Further, with the

emergence of 5G technology, cellular networks are expected to

become more complex with highly dynamic mobility patterns.

Therefore, such linear statistical models are not suitable for

accurate traffic prediction in mobile networks.

2) Deep Learning-Based Prediction: With recent advances

in Artificial Intelligence (AI), deep learning-based models

have been widely adopted for cellular traffic prediction, cap-

turing the complex and non-linear spatio-temporal correlations

in the traffic data [18]. Authors of [19] use Recurrent Neural

Networks (RNNs), such as LSTM, to predict the cellular traffic

data. They show that deep learning-based models outperform

the classical statistical models in traffic prediction. RNNs have

demonstrated a remarkable ability to predict time series data,

but they fail to capture the spatial dependencies in the data

accurately.

VIII. CONCLUSIONS AND FUTURE WORK

By mapping multiple DUs to the same CU, the C-RAN can

optimize coverage with the minimal number of CUs while

gaining high multiplexing gains. However, dynamically map-

ping DUs to CUs isn’t trivial due to the unpredictable nature

of network traffic and mobility patterns. Our paper presented

a methodology for an optimal city-wide C-RAN network that

utilizes a two-phase approach. In the first phase, we propose

to use the ConvLSTM model, which combines the existing

Convolutional Neural Networks (CNN) and Long Short Term

Memory Networks (LSTMs). Based on the predicted traffic

from the first phase, we develop an optimal DU-CU mapping

scheme that accounts for cost and quality objectives. Simulated

results show that the ConvLSTM model outperforms existing

state-of-the-art models with a 26% lower RMSE and a 36%

lower MAPE. Compared to reactive threshold-based cluster-

ing, proactive clustering can reduce the number of active CU

servers by up to 18% every 10 minutes without overloading.

In the future, we would like to extend the proposed frame-

work to include the concept of dynamic adaptation of the

RAN functional split. We will also study and quantify the

impact of frequent re-assignments of DUs to CUs on ongoing

connections.
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