Consolidated Caching with Cache Splitting and Trans-rating in Mobile Edge Computing Network

Shashwat Kumar and Dr. Antony Franklin A.

NeWS Lab Department of Computer Science and Engineering Indian Institute Of Technology, Hyderabad

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

IEEE ANTS 2017, Bhubaneswar, India

크

- 1 Introduction to MEC
- 2 Motivation
- 3 System Architecture
- Proposed Solution
- 5 Results
- 6 Conclusions and Future Work

Proposed Solution

Results Conclusions and Future Work

Mobile Edge Computing (MEC)

- Proximity
- Ultra-low latency
- High bandwidth
- Real-time access to radio network information
- Location awareness

Figure 1: An overview of Mobile Edge Computing(MEC) [1].

- Global data traffic will reach 49 Exabytes per month by 2021 and 78% of total mobile data traffic will be video data [2].
- Expanding network capacity may temporarily mitigate the network congestion!
- In network caching can solve the problem.
- To enable caching in the network An architecture is required to provide storage and processing.
- Mobile Edge Computing (MEC) is a suitable architecture to enable edge caching [3].

Proposed Solution

tion Results

Conclusions and Future Work

System Architecture

Figure 2: Mobile caching system where the edge-cache is deployed on the MEC server at the eNBs.

э

Proposed Solutions

Cache Consolidation

- No replication, only one copy of video in the cache network.
- More videos can be stored in the network.
- May lead to increase in delay.

Cache Splitting

- Logical splitting of cache storage to store complete and initial segments of the video.
- Helps in keep check on delay.

Motivation

Proposed Solution

Results Conclusions and Future Work

Proposed Solution: Cache Consolidation

Figure 3: Cache consolidation in MEC network.

▶ < E >

Motivation

System Architecture

Proposed Solution

Results Conclusions and Future Work

Proposed Solution: Cache Consolidation

Figure 4: Cache consolidation in MEC network.

≪ ≣⇒

Motivation

Proposed Solution

Results Conclusions and Future Work

Proposed Solution: Cache Consolidation

Figure 5: Cache consolidation in MEC network.

▶ < E >

Motivation

Proposed Solution

Results Conclusions and Future Work

Proposed Solution: Cache Consolidation

Figure 6: Cache consolidation in MEC network.

-> -< ≣ >

Motivation

Proposed Solution

Results Conclusions and Future Work

Proposed Solution: Cache Consolidation

Figure 7: Cache consolidation in MEC network.

-> -< ≣ >

Proposed Solution: Cache Splitting

- Cache storage can be split logically to store complete and initial segments of the videos.
- Caching initial segments helps in reducing the delay.

Figure 8: Cache splitting to store complete and initial video.

Results

Proposed Solution: Cache Splitting

Figure 9: Cache splitting to store complete and initial video.

-> -< ≣ >

Results

Proposed Solution: Cache Splitting

Figure 10: Cache splitting to store complete and initial video.

∢ ≣⇒

Proposed Solution

Conclusions and Future Work

Analytical Model for Cache Splitting

Average delay D,

$$\begin{split} D &= H.d_h + (1-H).d_m \\ D &= d_m - (d_m - d_h). \\ &\{ \frac{ln(C_s) - ln(1 - x.(1-n)) - ln(n.b)}{ln(N)} \} \end{split}$$

Total external traffic $T_{,}$

$$\begin{split} T &= H_i.(1-n).b + (1-H).b \\ T &= b - \frac{b}{ln(N)} [(1-n).ln(x) + n.ln(1-x.(1-n)) + ln(C_s) - ln(b) - n.ln(n)] \end{split}$$

Figure 11: Effect of cache splitting on delay and external traffic.

CachePro[4]

- Proposed ABR rate selection algorithm.
- Cache the content at the base station on MEC.
- Apply transcoding/transrating to convert the high bitrate video to low bitrate video and use proactive caching to download videos beforehand.
- There is no collaboration among the MEC servers, so same video might stored on different MEC servers.

Related Work

Joint Collaborative Caching and Processing(JCCP)[5]

- Apply transcoding/transrating to convert the high bitrate video to low bitrate video.
- Collaboration among the MEC servers for cached content and transrating.
- Formulation of delay a optimization problem
- Collaboration among MEC servers but no cache consolidation.
- Complete videos are cached.

Results

Performance Metrics

Hit Ratio

Fraction of requests fulfilled from the MEC network cache.

Average Access Delay

The average latency of content traveling from cache or ${\rm CDN}/{\rm content}$ server to the user device.

External Backhaul Traffic Load

The amount of data fetched from $\ensuremath{\mathsf{CDN}}\xspace/$ content server to fulfill the user request.

Proposed Solution

Results

Conclusions and Future Work

Simulation Parameters

Parameter	Value
MEC Servers	4
UEs per MEC	100
Inter request interval	8 Min.
Total simulation time	5000 Min
Length of the video	10 Min.
Number of videos	2000
Bitrates(360p, 480p, 720p, 1080p)	[0.4, 1.2, 2.5, 5] Mbps
Video Size	[5, 8, 10, 15] MB/Min.
Zipf parameter $(lpha)$	0.8
Delay (MEC — MEC)	[20, 60] ms.
Delay (MEC — Origin server)	[100, 200] ms.
Cache Size	30 GB
Processing Power	30Mbps.
Initial Segments	2 Min.
Split Ratio	75%

∢ ≣⇒

æ

Results:

Figure 12: Comparison of caching schemes for different cache size at each MEC server; cache split ratio x = 75%; processing power at each MEC server $G_{ij} = 50Mbps$.

Conclusions and Future Work

Results:

Figure 13: Comparison of caching schemes for different processing power at each MEC server; cache split x = 75%; Cache size at each MEC server $C_j = 400GB$.

Conclusions and Future Work

- Two-fold solution for caching at the edge of the mobile network, using MEC cache consolidation and cache splitting.
- By cache consolidation, more number of videos can be stored in distributed MEC cache which results in more hit ratio, less delay, and reduction in external backhaul traffic.
- Cache splitting further reduces the average access delay.
- Simulation results show that proposed scheme reduces the delay and backhaul traffic compared to the previous work.
- We are implementing a real time distributed caching system using OpenStack.

Acknowledgment

This work was supported by the project "Low Latency Network Architecture and Protocols for 5G Systems and IoT", SERB, Govt. of India.

References

- * "Mobile-Edge Computing Introductory Technical White Paper," *white paper*, September 2014.
- Gisco Visual Networking Index, Global mobile data traffic forecast update, 2016-2021," *white paper*, February 2017.
- "Mobile-Edge Computing Service Scenarios," ETSI Group Specification, September 2015.
- H. A. Pedersen and S. Dey, "Enhancing mobile video capacity and quality using rate adaptation, RAN caching and processing," *IEEE/ACM Transactions on Networking*, vol. 24, pp. 996–1010, April 2016.
- T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, "Collaborative multi-bitrate video caching and processing in mobile-edge computing networks," *CoRR*, vol. abs/1612.01436, 2016.

Introduction to MEC Motivation System Architecture Proposed Solution Results Conclusions and Future Work

THANK YOU

NeWS Lab IIT Hyderabad

イロト イ団ト イヨト イヨト

æ

Introduction to MEC Motivation System Architecture Proposed Solution Results Conclusions and Future Work

QUERIES ?

Website : https://shashwatsehrawat.github.io/ Email ID: cs15resch11011@iith.ac.in

