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Abstract—Proliferation in mobile devices and the increase
in video data consumption on these devices has led to an
unprecedented surge of data usage in mobile networks. It is
both challenging and expensive for network operators to scale
up the network capacity and tackle this ever increasing data
demand. Cellular network operators require alternative solutions,
like in-network-caching, to solve this problem. Popular streaming
services like YouTube use Dynamic Adaptive Streaming over
HTTP (DASH) for video streaming where videos are divided
into several small segments, and multiple bit-rate versions of
each segment are stored in the server. Using store and forward
caching method, in the network, may not help as the video
segments cached in one session might not be usable for other
users. This problem of unusability emerges as different users
request different bit-rates of the same video segment. Also, it is
not efficient to cache all versions of the video segments at the edge
of the network, due to limited storage at the edge. In this paper,
we propose a Multi-access Edge Computing (MEC) based video
caching mechanism, where only the highest available bit-rate
video is cached and by using the processing power available at the
MEC it is transcoded to the requested lower bit-rate version. We
develop a test-bed to evaluate the performance of the proposed
caching mechanism in real time. Through various experimental
results, we demonstrate that the proposed method reduces the
backhaul traffic load and video load time and increases the cache
hit-rate as compared to traditional store and forward caching
mechanism.

Index Terms—edge caching, MEC, video caching, caching
testbed

I. INTRODUCTION

According to Cisco [1], global IP traffic will reach 278 EB
per month and video traffic will have a share of 82% in
all consumer traffic by 2021. This excessive data usage will
cause back-haul congestion in the cellular network and thereby
driving the network operators to provide measures that tackle
network congestion. Extending the network capacity is one
of the plausible solutions to mitigate the congestion, however,
due to the exponential growth in data demand and high capital
expenditure (CAPEX), this approach is not sustainable. Edge
caching is a prominent solution for serving popular content
from the network edge, especially video content. If the video
is served from the network edge, the back-haul network
congestion due to video traffic can be avoided. Edge caching
can be enabled in the cellular network with Multi-access Edge
Computing (MEC) [2]. MEC is an architecture that provides

storage and computation at the network edge (i.e., base station)
for deployment of applications and services.
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Fig. 1: Bit-rates of different segments during a video playback
for two different users in a cellular network.

Content providers use Adaptive Bit Rate (ABR) video
streaming for video services. Dynamic Adaptive Streaming
over HTTP (DASH) has been developed as a standard for ABR
with the aim to improve video Quality of Experience (QoE).
DASH splits each video into multiple segments of equal
playtime (i.e., 2sec.) and multiple bit-rate versions of the same
video are stored in the content server. During video playback,
DASH tries to improve the users’ Quality of Experience (QoE)
by selecting the bit-rate of the next video segment, which
needs to be downloaded, in such a way that it minimizes
the probability of re-buffering and stalling. This quality se-
lection is primarily influenced by users’ preferences, device
capabilities, and network conditions. Availability of multiple
bit-rates makes video caching for DASH quite challenging.
As shown in Figure 1, during the playback of a video, two
different users may request different bit-rates of the same video
segment. Hence, cached video segments from one session
are unusable to serve other users watching the same video.
A simple caching mechanism such as store and forward is
not efficient for caching the DASH videos. To overcome the
limitations on DASH video caching, we exploit the transcoding
technique that allows the conversion of a higher bit-rate video
to a lower bit-rate video. MEC cache manager always caches
the highest available bit-rate of the video for the reusability of
the cached video segments for different video bit-rate requests.
When a user requests for a lower bit-rate version of a video,



video segments are transcoded to the requested lower bit-rate
version from the higher bit-rate video to serve the user. In
this work, we use the cache consolidation and cache splitting
solution as proposed in [3]. To realize the cache consolidation,
we introduce a central cache controller which helps in sharing
the cache information among the MEC servers. Our major
contributions in this work include:

• Development of a testbed for the evaluation of video
caching mechanism in a MEC architecture and perfor-
mance evaluation of the proposed caching mechanism on
the developed testbed.

• Evaluation of the feasibility of the real-time transcoding
with ffmpeg [4]. To evaluate the proposed caching
method, we created a data set of 200 videos and validated
it for conformance with ISO/IEC 23009-1 MPEG-DASH.

Rest of the paper is organized as follows. Section II covers
the significant work in this area. In Section III, we provide
the details of the developed testbed architecture and discuss
the proposed video cache algorithm. Section V highlights the
details of the experimental test-bed. In Section VI, we discuss
the results and finally conclude the paper in Section VII.

II. RELATED WORK

In [5], Lei et al. implemented a prototype for edge using
Virtual Network Function (VNF) and realized the edge caching
through the service chaining using Open Air Interface (OAI)
and Content Centric Networking (CCNx). In [6], authors used
proactive caching off popular content at the edge during off-
peak hours to alleviate backhaul congestion. They further used
the social structure of the network and D2D communication
to disseminate the content. Authors in [7], proposed an edge
caching scheme in the mobile network based on content-
centric-networking. They utilized the backhaul link between
the Base Stations (BSs) for collaborative caching. In [8],
caching and processing for multi-bitrate video streaming is
proposed. However, they do not consider the collaborative
scheme of multiple caching servers. The heuristic solution
in [9] requires the knowledge of the content popularity, which
may be hard to estimate accurately in practice. Most of the
works do not solve the problem of DASH video caching at
the edge in the test-bed environment and mostly rely on the
simulation results which might differ when applied in the real
world.

III. SYSTEM ARCHITECTURE

Figure 2 shows the proposed architecture where MEC
servers are deployed alongside the eNBs in cellular Radio
Access Network (RAN), providing computation and storage
capabilities to enable caching at the edge of the network. MEC
server can also be deployed in Evolved Packet Core (EPC), but
that may increase the latency, so we choose MEC deployment
at eNB. MEC servers collaborate to share their computing
and storage resources. The proposed cache architecture has
the following components;
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Fig. 2: System architecture of edge caching using Multi-access
Edge Computing (MEC).

A. Cache Storage

Cache storage caches the video segments for future use.
Cache storage is bifurcated into complete-video-cache and
initial-video-cache. Complete-video-cache stores all the seg-
ments of a video and initial-video-cache stores only initial
segments, sufficient to start the playback, of a video. Cache
splitting is further discussed in Section IV.

B. Central Cache Manager

Central cache manager keeps track of all the videos cached
in the MEC network with a hash map of video ID and their
location. Central cache manager ensures the cache consol-
idation among the MEC servers and avoids replication of
the same video in the cache network. The central cache
manager provides the video location information to local
cache managers and receives cache updates from local cache
manager whenever there is a change in the complete video
cache of that MEC.

C. Local Cache Manager

Local cache manager resides on the MEC server at the net-
work edge. On receiving a video request, local cache manager
search for the video in the local caches on MEC server. If the
video is not available locally, then local cache manager sends
the request to central cache manager for the video location and
forward the received location to the streaming server. When
a video is added to or get replaced in the local cache, local
cache manager propagates this information to the central cache
manager with update messages. These update messages carry
either add video message to make an entry for a new video or
del video message to remove the entry of a replaced video.

D. Streaming Server

The streaming server on each MEC streams the requested
videos to the users. The streaming server fetches the video
segments from the location (local cache, other MEC servers,
or main content server) provided by the local cache manager.
If video segments are fetched from the main content server,
streaming server caches the video segments in the complete
video cache. When streaming server fetches video segments



Fig. 3: Sequence diagram representing the different scenarios to fulfill the user requests.

from the cache of other MEC server, it caches initial segments
of the video in the initial video cache on local MEC server.

E. Transcoder

Transcoder converts a video segment from high bit-rate
to a requested lower bit-rate version. Video segments are
transmitted in .m4s format to play on a DASH client, but
.m4s video segment cannot be transcoded to the lower bit
rate as it is. For transcoding, the video segment is converted
to .mp4 format by adding the dashinit header of the same
bit-rate to the .m4s data. Now, .mp4 file is transcoded to
the required lower bit-rate version using FFmpeg [4]. After
transcoding, video segments are converted back to .m4s format
using MP4box [10] so they can be played on a DASH client.

Figure 3 shows the sequence diagram of the operations
followed to deliver a video segment through the proposed
architecture in different scenarios. On receiving a request, one
of the four cases is followed based on the availability of the
video content.

Case 1: When the complete video is available in the local
cache. Local cache manager forwards the video request to
the streaming server and streaming server fetches the video
segments from the local cache and serves the user after
transcoding it to the requested bit-rate.

Case 2: When only initial video segments are available in
the local MEC server, the streaming server serves the initial
segments from the local cache and fetches the remaining
segments from either other MEC server or main content server.
If video segments are fetched from the main content server
then streaming server cache the complete video locally.

Case 3: When the video is not available on local MEC
server, local cache manager sends a query to the central cache
manager which provides the location of the MEC server with

cached video. While serving the user from other MEC server,
the streaming server also caches the initial segments of the
video in the local cache.

Case 4: When the requested video segment is not available
in the cache network, central cache manager returns the
address of the main content server upon receiving the query
from the local cache manager. In this case, the streaming server
caches all the video segments in the local complete video
cache while serving the user.

IV. PROPOSED SOLUTIONS FOR VIDEO CACHING

In the proposed solution, we try to use both caching and
processing capabilities at the MEC servers to satisfy the user
requests for different video bit-rates. With sufficient processing
power to transcode the video from higher bit-rate version to a
lower bit-rate version, there is no need to cache lower bit-rate
videos. In this work, we propose that only the highest available
bit-rate h of the video segments s is cached at the edge of the
network. When a user requests for a lower bit-rate q : q<h of
the video segment vsq , it is served after transcoding from the
higher bit-rate version vsh. Algorithm 1 shows the working of
the proposed solution, where CFj and CIj represent the set of
all videos cached in complete and initial video cache at MEC
server j. In step 2 and 3, video segment vs is available in
local cache (CFj or CIj ) and the user is served from the local
cache. In step 4, if the segment is cached on other MEC server
CFk then it is fetched from there after transcoding to vsq . As
proposed in [3], we use cache consolidation and cache splitting
in this work. A brief description of cache consolidation and
cache splitting is as follow,



Algorithm 1 Caching Algorithm

1: For each video segment request vsq arriving at MEC server
on eNB j, proceed.

2: if vsh ∈ CFj then transcode the video segment (vsh → vsq)
and serve the user from CFj .

3: else if vsq ∈ CIj then serve the video segments from CIj .
4: else if vsh ∈ CFj,j 6=k then Fetch the video segment after

transcoding (vsh → vsq) at server k. If vsq is initial video
segment then cache it in Cj (CIj → CIj + vsq).

5: else
6: fetch the video segment (vs) from origin server in highest

available bit-rate (vh) and cache it on CFj (CFj → CFj +
vsh), transcode the video segment (vsh → vsq) and serve the
user.

7: end if

Cache Consolidation

As shown in Figure 2, edge caches reside on MEC servers
at the eNbs which results in a distributed video caches. MEC
servers can collaborate to consolidate the distributed cache
storage. In cache consolidation, the same video does not
replicate over different MEC servers and when a request
arrives for a video, MEC servers can share the content to
fulfill the request. With cache consolidation, MEC servers can
cache more videos collectively which improves the hit ratio
and external traffic load.

Cache splitting

During video playback, initial load time, the time between
the user request and starting of playback, depends on how
fast user receives the initial video segments. Caching initial
video segments are sufficient to reduce the initial load time.
However, if all cache storage caches only the initial video
segments then, for each hit, rest of the video segments need
to be downloaded from the content server over the Internet.
This will result in high external traffic load on back-haul. To
balance the external traffic load and the access delay, cache
storage can be logically bifurcated into two parts. One part of
the cache storage is used to cache complete videos and another
part to cache only initial segments of the videos. When some
videos are cached on some other MEC server, initial segments
of the video are cached locally in initial video cache to reduce
the initial load time.

V. EXPERIMENTAL SETUP

For the experiment, we deployed one main video server,
four MEC servers, and 20 clients. Each MEC server serves five
clients. The main video server is deployed on a workstation
with two Xeon CPU E5-2690 processor with a clock speed of
2.60 GHz, 40 cores, and 1TB hard disk drive (HDD) storage.
Each MEC server runs on a virtual machine with ten cores
each with 2.60 GHz clock speed. Local cache manager and a
local streaming server run on each MEC server and each MEC
server has the cache storage that we vary for the experiments.
Each MEC servers is connected to the network with 1Gbps

links. For creating a real-life scenario, we add a delay of
10ms between MEC servers and 20ms between the main server
and MEC servers. Netem and Wondershaper tools are used to
simulate a cellular environment on the links between MEC
server and client.

As discussed earlier, the main components in the archi-
tecture are central cache manager, local cache manager, and
local streaming server. The central cache manager is a multi-
threaded python program that waits for a connection request
from the local cache manager using the socket programming.
Central cache manager uses a hash table to store the video ids
and their location. When local cache manager caches a video
in complete video cache, it sends an add video command to
central cache manager with video ID to add an entry of the
video in the central hash table. When local cache manager
replaces a video in the complete video cache, it sends a
del video command to central cache manager to delete the
video entry from the hash table. If a video is not available in
the local cache, local cache manager sends a query command
to find the location of the video. The location returned by
central cache manager might be one of the MEC servers if
the video is stored in the cache network or main video server.

Local cache manager uses python flask module to handle
requests from the client browser. If the video is not cached
locally, local cache manager connects to the central cache
manager to find the video location. When the central cache
manager returns the video location, local cache manager
returns it to the client browser in an HTML page which also
contains the address of the videos’ mpd file. The HTML page
follows the standard DASH forum format so any browser,
which supports DASH streaming, can play the video. The
streaming server is implemented in Node.js and Express web
application framework is used for streaming application. Local
cache manager listens to users video requests on a pre-
specified socket.

TABLE I: Video resolutions and respective encoding bit-rates.

Resolution Bit-rate
240p (320x240) 0.4Mbps
360p (640X360) 0.8Mbps
480p (854X480) 1.5Mbps

720p (1280X720) 3Mbps
1080p (1920X1080) 5Mbps

Popular video streaming service providers such as YouTube
use HTTPS to transfer the videos using end-to-end encryption,
so it is not possible to cache the content from that service
provider. To test a video caching mechanism a broad set of
videos are required, so we created a data set of 200 videos in
DASH format using H.264 encoding. Table I shows the bit-
rates used for encoding; these encoding rates are comparative
to the representation and resolution of YouTube [11].

Our data set has the videos in five resolutions and three
segment sizes (2 Secs, 4 Secs, and 6 Secs). So our data set
contains 15 copies of a video in different resolutions and
segment sizes. We generate Media Presentation Description
(MPD) file for all the videos using template-based segment
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Fig. 4: Time taken to transcode videos of different playtime
from a higher bit-rate input video to a lower bit-rate video.

representation in MPD files. All generated MPD files have
been validated with the online DASH validator of “dashif.org”
for conformance with ISO/IEC 23009-1 MPEG-DASH.

VI. RESULTS AND ANALYSIS

In this section, we evaluate the performance of the proposed
scheme. An MEC server is deployed at each eNB, as shown in
Figure 2, to provide the caching and processing resources. We
conducted the experiments with the video library of 200 videos
and playtime of each video is 3-8 minutes. We evaluated
the proposed caching method using Independent Reference
Mode (IRM), where content i is requested according to an
independent Poisson process with a rate λpi. λ = 7minute
is used to control the request rate and pi refers to content
popularity. The user requests follow the Zipfs’ popularity
distribution [12], which gives the probability of an incoming
request for ith popular video as,

pi =
i−α∑N
j=0 j

−α
(1)

where α is Zipf parameter which is set to 0.8.
To use the transcoding mechanism along with caching, we

should know the scalability of the transcoding. If a transcoder
can transcode multiple videos to a lower bit-rate version in
real-time than we can cache only highest available bit-rate
version and convert it to lower bit-rate whenever required.
As some resources can be allocated for the transcoding on
the MEC servers, to evaluate the number of possible parallel
transcoding, we use two machines one with 8-Cores and other
with 4-Cores where each core runs at 2.4Ghz clock speed.
GPU is not available on either machine to assist in encoding.
When encoding speed goes below 1X (means transcoding
taking more time than the playback time of the video), we
consider it as no more parallel encoding is possible on the
machine.

Results in Table II show that when we transcode the video
from one higher bit-rate to lower bit-rate (each row shows
the input video bit-rate and each column shows the output
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TABLE II: Number of real-time parallel transcodings from
higher to lower resolution on 4 and 8 core machines.

With 8-Core Machine With 4-Core Machine
720p 480p 360p 240p 720p 480p 360p 240p

1080p 3 6 10 14 2 3 4 6
720p - 7 12 18 - 4 6 9
480p - - 14 22 - - 8 11

video bit-rate). The number of possible parallel conversions
depend on the input and output video bit-rates. When we
convert a video from 1080P to 240P , the machine supports
14 parallel conversions but this value decreases when output
bit-rate increases (360P - 10, 480P - 6, and 720P - 3). When
we transcode from different higher bit-rate inputs videos to
a lower bit-rate video, conversion from lower bit-rate input
video supports more parallel transcodings. As from the Table II
column three 480P bit-rate input video provides the maximum
number of transcoding followed by 720P and 1080P . The
reason behind this behavior is that transcoder needs to process
more information when it converts from 1080P to 360P
compared to 480P to 360P conversion. As we double the
number of cores for transcoding, the number of parallel
transcoding increase.

Figure 4 shows the time to transcode a higher bit-rate video
to lower bit-rate video. As average video length on YouTube
is 160s [12], so we choose a ten-minute video for transcoding
time calculation and take initial two, four, six, eight minutes
and full video to calculate the transcoding time. To calculate
the transcoding time, we transcoded entire videos at a time
or else only one segment is transcoded at a time in real-time.
Results show that transcoding time increase with the video
duration and output video bit-rate. Figure 5 shows that when
we transcode a video to a predefined bit-rate from different
bit-rate input videos, transcoder takes less time to transcode
the lower bit-rate input video compared to the higher bit-rate
video. Transcoding time may differ for different videos based
on the scene complexities.

We compare the proposed method with the traditional
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Fig. 6: Change in load time, hit ratio, and external traffic load with an increase in cache size.

approach. The traditional caching scheme is store and for-
ward approach where the video segments are cached in the
requested quality and same video may be cached on different
MECs causing the data replication. Because store and forward
method is predominantly used for caching in real-world so we
compare the proposed caching scheme only with the traditional
approach. We examine the two methods based on the following
parameters;
• Load Time - Load time is the time taken between the

users’ request for video and when playback starts.
• Hit ratio - fraction of requests fulfilled from the MEC

cache network.
• External traffic load - the amount of data fetched from

CDN/content server to fulfill the user requests.
Figure 6(a) shows that the proposed approach significantly

decreases the load time. In the proposed method, only the
highest available bit-rate of the video is cached at the edge
and it is transcoded to the requested bit-rate for every request
before serving the user. By caching only the highest available
bit-rate, more number of videos are cached on the MEC servers
because only one bit-rate variant of each video is cached. Even
though transcoding adds some marginal delay, on average it
reduces the load time significantly by 33%-38%.

Figure 6(b) shows that the proposed approach provides
better hit-ratio compared to traditional approach. Proposed
approach increase in cache hit-ratio by 5%-8%. As we cache
only the highest available bit-rate and perform the transcoding
for requests of other bit-rates, more videos are cached. In the
traditional approach, as multiple bit-rates of the same video
might be available in the cache, it affects the hit-ratio as less
distinct videos can be cached.

Figure 6(c) shows the percentage of data downloaded from
the content server to fulfill the user requests. For 20% of the
cache size on each MEC server, proposed approach decrease
in the external traffic up to 48%.

VII. CONCLUSION

In this work, we proposed that the cache should store only
the highest available bit-rate video and use the transcoding
to serve the lower bit-rate video requests. To evaluate the
performance of the proposed caching scheme in real time, we
developed a test-bed for DASH video caching and prepared
a dataset of 200 videos (encoded in H.264) in DASH format.

First, we evaluated the transcoding with ffmpeg and results
show that the number of possible parallel transcoding depends
on the input and output video bit-rates and without any hard-
ware acceleration multiple video streams can be transcoded in
real-time. The experimental results for the proposed caching
approach show a significant improvement in the hit-ratio and
up-to 22% decrease in the external traffic load. Proposed
caching scheme also improves the users Quality Of Experience
(QoE) by reducing the video load time up-to 38% with a cache
size of 20% of the total video library.
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