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Abstract—The recent adoption of virtualized technologies in
Next Generation Radio Access Network (NG-RAN) has driven
a significant impact on energy consumption by subsequently
decreasing the number of active base stations. The base sta-
tion (gNodeB) of 5G is segregated into cost-efficient Central
Units (CU) hosted on virtual platforms and cheaper & smaller
Distributed Units (DU) present at the cell sites. Multiple CUs
are pooled together in a single powerful central cloud, known
as CU pool. The logical connection between DU and CU can
be dynamically adjusted and can potentially affect the energy
consumption of the CU pool. The deployment of NG-RAN
imposes strict latency requirements on the fronthaul link that
connects DUs to CU. To relax these strict latency requirements,
various alternate architectures such as Flexible RAN Functional
Splits have been proposed by 3GPP. In this paper, we first
evaluate the energy consumption of DU and CU for various
functional split options using OpenAirInterface (OAI), a real-
time open source software radio solution. We find that lower
layer splits have high energy consumption at CU as compared
to higher layer split options. We also observe the variation in
energy consumption due to traffic heterogeneity. Motivated by
the above study, we formulate an optimization model, Apt-RAN,
that optimizes the energy consumption of the CU pool and the
number of handovers, considering different functional splits. To
address the computational complexity of solving the optimization
model, a lightweight polynomial time heuristic algorithm is
proposed. Simulation results demonstrate that our proposed
model outperforms existing state-of-art schemes.

Index Terms—Central Unit (CU), Distributed Unit (DU), Flex-
ible functional splits, Handovers, OpenAirInterface (OAI), CU
Pool.

I. INTRODUCTION

Over the past few years, the popularity of internet-enabled

smartphones and tablets, along with data-intensive high-end

applications, have increased to preposterous heights [1]. This

has resulted in a colossal increase in data demand and has

forced the network operators to upgrade their networks con-

stantly while keeping the costs as low as possible to offer

competitive prices. While the current network architecture was

not originally designed to cope up with such exponentially

growing rate, Next Generation Radio Access Networks (NG-

RAN) has been recently introduced as a competent and profi-

cient solution to address the above issues as well as to reduce

the deployment cost.

In NG-RAN, the protocol stack of Next Generation Node B

(gNB) is split into two components, Central Units (CU) and

Distributed Units (DU) [2]. DUs remain at the cell site to

provide basic signal transmission functionalities whereas CUs

are aggregated in a CU pool where cloud computing and vir-

tualization mechanisms are used to provide significant energy
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Fig. 1: Programmable & virtualized computing center for CUs in NG-RAN.

efficiency and multiplexing gains, as shown in Fig. 1. Both CU

and DU communicate through a low latency high-bandwidth

interface called as fronthaul interface. Specifications from

Common Public Radio Interface (eCPRI) [3] and Next Gen-

eration Fronthaul Interface (NGFI) [4] are used to carry the

IQ samples over the fronthaul link. The bandwidth and latency

budget required to run a fully centralized solution is extremely

high. As per 3GPP report [5], a fully centralized network

considering 5G-NR with 100 MHz and 32 antennas requires

a fronthaul bandwidth 157.3 Gbps. Such a high capacity may

not be affordable and thus leaves a room for improvement.

Therefore, 3GPP proposed the concept of functional splits to

have a partially centralized NG-RAN architecture. A func-

tional split determines which gNB functions to be left locally

at the cell site and which functions to be moved to the central

CU Pool. The functional splits, along with centralization and

virtualization technology, provides a higher degree of freedom

that can be utilized to make optimized decisions.

The traffic pattern of a cell is observed to be influenced by

its geographical location and its neighboring cells, known as

spatio-temporal traffic variation or the tidal effect, as shown

in Fig. 2. It can be observed that the DU load is more during

weekdays as compared to the load during the weekends. It is

also noticeable that peak load occurs only for few hours of
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Fig. 2: Time varying normalized mean traffic load at the cell site.

a day. Typically, in NG-RAN, a one-to-one mapping exists

between DUs and CUs. However, considering the diverse

mobile services and fluctuating traffic patterns, allocating one

dedicated CU to each DU leads to extremely poor utilization

of CU resources during off-peak hours. The server in which

CU is provisioned has to be active all the time even if only

few users are served by it. Therefore, allocating one CU to

each DU is highly inefficient and inevitably leads to significant

wastage of energy and CU resources.

Recent advances in virtualization and cloudification tech-

nologies allow operators to deploy instances of CU on top

of hypervisors such as dockers, VMs, etc., to reduce power

consumption and improve resource utilization [6]–[8]. As

shown in Fig. 1, multiple DUs can be mapped to a single CU

because of the isolation flexibility of cloud platform, thereby

creating a many-to-one deployment relationship between DU

and CU. Compared to one-to-one DU to CU mapping, many-

to-one mapping provides more flexibility and higher energy

savings. More specifically, several VMs can be turned on or off

based on traffic heterogeneity to reduce power consumption.

The energy consumption can be minimized even further by

reducing the extra cost associated with the relocation of DUs.

A relocation can occur when the traffic load of DUs hosted on

the same CU exceeds beyond CU capacity, thereby degrading

Quality of Experience (QoE) for the end users. DU relocations

must be triggered in a controlled manner such that the number

of user services (e.g., Guaranteed Bit Rate (GBR) applications)

affected during the relocation is minimum. Furthermore, while

relocating the DUs, the location of DUs should be taken

into account such that the neighboring DUs are relocated

to the same CU. This will reduce the possibility of inter-

DU handovers experienced by the users (discussed later in

Section II-B).

The facts mentioned above motivate us to study the

DU-CU mapping problem in NG-RAN with the objective

to minimize the energy consumption at the CU pool along

with the number of handovers while ensuring Quality of

Experience (QoE) for the end users. More specifically, the

question that is addressed in this paper is: how does Apt-RAN

model, proposed with energy cost in mind, affect QoE of

UEs? Apt-RAN is a novel and innovative model that aims

to minimize the total energy consumption at CU pool by

reducing the number of active CUs. Apt-RAN also reduces

the number of handovers by mapping neighboring DUs to the

same CU based on the mobility probability of UEs (discussed

later in Section III-E). Finally, to ensure better QoE for the

users, Apt-RAN minimizes the total number of DU relocations

and the number of affected GBR flows.

Following are the main contributions in this paper:

1) We implement a real-time and programmable NG-RAN

testbed using OpenAirInterface (OAI) [9]. Both CU and

DU are realized over virtualized platforms and are con-

nected via a high speed 10 Gbps optical fibre fronthaul

link. The DU is connected with a USRP B210 device to

transmit and receive radio signals.

2) We use the above implemented NG-RAN testbed to

perform extensive experiments to study the variation in

energy consumption at CU by varying the load at DU.

We also study the effect of various functional splits on

energy consumption at CU and DU.

3) Using motivational results from the OAI testbed, we

formulate an optimization model, Apt-RAN, that mini-

mizes the total energy consumption at CU pool along

with the total number of handovers, considering different

functional splits.

4) The proposed model improves the QoE by reducing the

number of DU relocations and the number of affected

GBR flows associated with each user.

5) To address the computational complexity of the optimiza-

tion model, we propose a lightweight polynomial-time

heuristic algorithm. The greedy approach of the heuristic

algorithm can find a near optimal solution in the order of

seconds. This makes the proposed algorithm an efficient

solution for real-world deployments.

The rest of the paper is organized as follows: Section II

presents the motivational results obtained from the real-time

OAI testbed. The system model and the problem formulation

are presented in Section III and Section IV, respectively. In

Section V, we propose the heuristic algorithm and evaluate

its performance. A comprehensive review of related works on

energy and handovers minimization is presented in Section VI.

Finally, conclusions and future works are highlighted in

Section VII.

II. MOTIVATION

A. Effect of Functional Splits on Energy Consumption

As a part of NG-RAN, 3GPP proposed eight different

functional split options between DU and CU [10], as shown in

Fig. 3. Some of the benefits of deploying a flexible split based

architecture include cost-effectiveness, load management, real-

time performance optimization using dynamic split, and re-

duction in fronthaul bandwidth requirement. The choice of

how to split the NG-RAN architecture depends on several

factors related to radio network deployment scenarios, traffic

constraints, and intended supported services. Some of these

factors are QoE (low latency, high throughput), user density,

and geographical location of DUs.

Moving from Option 1 to Option 8, computationally costly

operations like Fast Fourier Transformation (FFT), Inverse



3

RRC PDCP
High 

RLC

Low 

RLC

High 

MAC

Low 

MAC

High 

PHY

Low 

PHY
RF

RRC PDCP
High 

RLC

Low 

RLC

High 

MAC

Low 

MAC

High 

PHY

Low 

PHY
RF

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8

DATA

DATA

Distributed

RAN

Centralized

RAN

Edge Cost and Complexity

Centralized Gains, 

Latency, and Bandwidth
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Fig. 4: OAI based NG-RAN testbed for different splits of NG-RAN.

Fast Fourier Transformation (IFFT), Rate Matching, and Turbo

encoding/decoding are shifted to CU side, resulting in varia-

tion in energy consumption at CU and DU. To validate this

claim, an NG-RAN prototype is developed for split Option 2

(PDCP/RLC), Option 7 (Lower PHY/Higher PHY), and Op-

tion 8 (PHY/RF) using OAI, as shown in Fig. 4. The CU is de-

ployed on an Intel Xeon x86 machine with 3.4 GHz frequency

and connected to DU with the identical configuration through

a Gigabit Ethernet (GbE) switch. DU is connected with an

RF front-end using USRP B210 device. All the parameters

used in the OAI experimental setup are listed in Table I. We

use iPerf3 [11] tool to generate uplink and downlink TCP

traffic between a UE and NG-RAN for a fixed duration of

120 seconds. To calculate the energy consumption at both

CU and DU, Running Average Power Limit (RAPL) [12]

tool is used. RAPL tool is helpful in fetching thread-wise

power consumption with the help of Model Specific Register

(MSR) [13]. Fig. 5 shows the power consumption at CU and

DU for split Option 2, Option 7, and Option 8. One of the key

observations from this study is the energy of CU is reduced

by nearly 30% when we move from Option 8 to Option 7

as lower PHY layer functions such as FFT and IFFT are

moved to DU side. However, higher PHY operations like turbo

encoding/decoding operations still reside in CU for both the

splits. Similarly, nearly 75% of CU energy is reduced for

Option 2 as compared to Option 8. The same prototype is

used to study the effect of traffic heterogeneity on energy

consumption at CU for split Option 7, as shown in Fig. 6.

Traffic heterogeneity is achieved by limiting the number of

Physical Resource Blocks (PRBs) in enb scheduler module

TABLE I: OAI testbed parameters

Parameters Values

Frequency 2660 MHz (DL)

Bandwidth 10 MHz

Maximum Resource Blocks 50

Number of Connected UEs 2

Mode FDD Band 7

Fronthaul Connection 10 Gbps Optical cable

of OAI.

Based on the above study, we conclude that there is a

significant variation in energy consumption at both DU and

CU when different splits are chosen. We also observe that

traffic heterogeneity also has a considerable impact on energy

consumption. Therefore, we model our RAN topology based

on different split options, considering spatio-temporal traffic

patterns.

B. Handovers in Virtualized NG-RAN

The handover procedure is one of the critical functions

of mobile networks. During the handover, UE changes its

association from one DU to another DU. In traditional mobile

networks, when UE moves from one cell to another neigh-

boring cell (both part of the same network), ongoing UE’s

traffic is re-routed to the neighboring cell. Handover is a

function of RRC (Radio Resource Control) protocol that is

running on UE and CU, without any assistance of DU to

which UE is connected to. During the handover procedure,

the latency of re-routing of the ongoing traffic could affect

QoE anticipated by UEs. The authors of [14] observed that
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there is a 10% increase in video session abandonment rate due

to increased handover latency. Handovers also affect the QoE

of the web traffic. The authors of [15] claimed that most of

the web sessions are abandoned in the presence of handovers.

The authors of [16] highlighted that signaling overhead is

drastically increased during the handover procedure, resulting

in increased call holding time.

In the proposed Apt-RAN model, we consider many-to-

one mapping between DUs and CUs. Therefore, when a user

moves from the coverage area of one DU to the coverage area

of another DU, it does not result in a handover if both the

DUs are mapped to the same CU. Reducing handovers help

in satisfying QoE of users in 5G.

III. SYSTEM MODEL

Consider D = {d1, d2, . . . , dn}, C = {c1, c2, . . . , cm} as

the finite set of DUs and CUs in CU pool, respectively. Since

there can be a many-to-one mapping between DUs and CUs,

we have | D |≥| C |. Let U = {u1, u2, . . . , uk} be the set of

k UEs distributed under coverage of | D | DUs. All the CUs

have a fixed capacity Cc. We define the association between

DU d ∈ D and CU c ∈ C using a binary variable

ydc =

{

1, if DU d is mapped to CU c

0, otherwise

Considering traffic heterogeneity, all CUs may not be active

all the time. Therefore, we define a binary variable

zc =

{

1, if CU c is active

0, otherwise

Similarly, all DUs may not be active if there is no UE

connected to it. Such a scenario is highly unlikely but could

still be considered in the optimization model. Therefore, we

denote another boolean variable

z′d =

{

1, if DU d is active

0, otherwise

We consider that each UE u ∈ U can be served by only one

DU. Therefore

xud =

{

1, if UE u is served by DU d

0, otherwise

A. RAN Topology

For modeling the RAN topology, tools from stochastic

geometry, point process, and spatial statistics are proven to

be more accurate and realistic. Deployment of UEs and DUs

is done based on the stochastic point process theory. Fig. 7

highlights the distribution of 50 DUs and 500 UEs in a region

spread over 40 km * 40 km. The deployment of DUs is

accomplished as per the Matern Hard Core Point Process type

II (MHCPP II) [17] and the deployment of UEs as per Poisson

Point Process (PPP) model. Let, the spatial distribution of

DUs and UEs be ΦDU and ΦUE , respectively, where {ΦDU ,

ΦUE} ∈ R
2. To plot and depict the coverage regions, Voronoi

tessellation is used. For better precision, propagation loss with

shadowing and fading is included in the channel model. Values

of SINR and interference from neighboring DUs are computed

using 3GPP Pathloss Model [18], and every UE is associated

with the DU that gives the highest SINR value.

In this work, we consider three different split options for re-

alizing RAN topology. These splits are PDCP/RLC (Option 2),

HighPHY/LowPHY (Option 7), and PHY/RF (Option 8).

Each functional split option imposes a certain strict fronthaul

bandwidth and latency requirement, as stated by 3GPP in [5].

Authors in [19] studied the datasets of real topologies of

different countries and designed a framework to optimally

place the RAN functions, considering different functional
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splits. We used meta-data of the same topologies to model our

RAN topology. The meta-data includes bandwidth and latency

of the fronthaul links between DU and CU. The same meta-

data is applied on Fig. 7 to decide the split option for each

DU-CU pair, as shown in Fig. 8. For each DU, lower-layer

split options (Option 7 and Option 8) are preferred over higher

layer split options (Option 2), if both latency and bandwidth

constraints are satisfied. The main idea behind this preference

is to have as many centralization benefits as possible such

as Coordinated Multi-Point (CoMP), Inter-Cell Interference

Coordination (ICIC), energy efficiency, adaptability to non-

uniform traffic, and improved QoE for the users [20].

B. DU Traffic Model: Cell Load

At any given time t, each DU d ∈ D is associated with

a set of users Ud(t) ⊂ U based on maximum received

signal strength. Let ψu
D(t) = (ψu

1 (t), ψ
u
2 (t), . . . , ψ

u
D(t)) be the

complex channel vectors from all the DUs to user u ∈ U at

time t. In our model, we use the information of instantaneous

rate and channel quality of the UEs that are available at the

MAC scheduler to estimate the load at cell depending on the

split option used by the respective DU-CU pair [21]. Consider,

Nu as the total number of PRBs allocated to user u and N

be the total number of PRBs available with each DU. Hence,

the load ld(t) at each DU d at time t, is given by,

ld(t) =
∑

u∈Ud(t)

Nu

N (1)

To ensure QoE for the users, the proposed model also

aims at supporting Guaranteed Bit Rate (GBR) applications

as described in 3GPP TS 23.203 such as conversational

videos, voice traffic flows, live streaming videos, and real-

time gaming. Let us denote Nc, Nv, Ns, and, Ng as number

of conversational videos, voice traffic flows, live streaming

videos, and real-time gaming, respectively. The information

regarding the type of GBR flows is available at base station

(CU) during the establishment of bearers itself. In LTE,

different flows can be classified using the QCI (QoS Class

Identifier) of the bearers. Similarly, in 5G, QFI (QoS Flow

ID) can be used to classify the flows [22]. Let Nngbr be the

total number of non-GBR data flows in DU. All the flows

are generated randomly using Poisson Distribution. For each

DU d ∈ D, we compute the score metric ws′d as described in

Eqn. (2) that represents the consolidated value of active user

flows.

ws′d = (w1 ×Nngbr) + (w2 ×Nv+

w3 ×Nc + w4 ×Ng + w5 ×Ns)
(2)

such that,
∑5

i=1 wi = 1. Individual DU weighted score ws′d
(ws′min <= ws′d <= ws′max) can be normalized within range

[0,1] as follows.

wsd =
(ws′d − ws

′
min)

(ws′max − ws
′
min)

(3)

To prioritize the user flows in a DU, above calculated normal-

ized score is used.

Remark 1. Several weighted decision variables

(w1, w2, w3, w4, w5) are considered to calculate the score

metric for each DU. However, it is non-trivial to give an

analytical proof for finding these values. These parameters

are operator dependent and vary from one operator to the

other. The proposed Apt-RAN model is flexible enough to be

modeled based on any set of values for these variables.

C. CU Computing Resource Model

For each user u ∈ U , baseband processing load consists

of two major components. First one is user independent static

cell specific baseband load. The second one is a dynamic value

which is dependent on user and is modeled as a function of

Physical Resource Blocks (PRBs) and Modulation and Coding

Scheme (MCS) assigned to those channel resources [23].

The baseband processing time per subframe proc(u, t) in

microsecond is given by,

proc(u, t) = rbase + pbase + u(mcs, prb) + u(r) (4)

where rbase and pbase are the constant base offsets for the cell

and virtualized platform (Docker, VirtualBox, KVM, and etc.),

respectively. u(mcs, prb) is the user dependent processing

which is a function of allocated PRBs and MCS, and u(r)
is the remainder of other user-specific tasks.

Performance of a cloud platform is typically measured in terms

of a number of instructions executed per second. However,

for scientific formulations and accurate analysis, count of

FLoating-point Operations Per Second (FLOPS) is used to

measure the cloud platform’s performance. E.g., consider a

single core Intel CPU with a frequency of 2.5 GHz, capable of

performing 4 FLOPS in one cycle. This results in a theoretical

performance of (2.5× 109× 4) = 10 GFLOPS. Let us denote

this maximum value as Lmax. The compute load lc(t) for

CU c ∈ C in Floating-point operations serving multiple DUs

d1, d2, . . . , dn ∈ D is given by,

lc(t) = Lmax ×




∑

u∈Ud(t)

proc(u, t)



 (5)

D. Consolidation and Relocation Cost

As mentioned in Section II, traffic heterogeneity can lead

to over-utilization or under-utilization of CUs. This problem

can be tackled by live relocation of DUs from one CU to

another CU. However, this relocation incurs additional cost,

because it iteratively writes all the active memory pages of

DU from a serving CU to the target CU. This extra cost of

relocation can be modeled as a linear relationship between

compute load and power consumption. Considering Pidle as

the idle power drawn at 0% compute load and Pcap as the

maximum power drawn by the CU at 100% compute load, the

power consumption of a CU with compute load lc is given by,

Pc = Pidle + (Pcap − Pidle)× lc (6)

The energy consumption is given by (Pc × tc), where tc
represents the time duration for which CU is operated at Pc

power.
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As per SPEC power benchmark [24], a standard general pur-

pose Intel Xeon X5670 processor consumes nearly 259 Watt

on an average when compute load at the server is 100%.

The authors in [25] investigated the major factors impacting

migration performance and designed a model to evaluate the

same. Based on the performance model, a linear model is

formulated using linear regression to estimate VM relocation

energy. Let Ed be the energy in Watt-second consumed when

a DU d are relocated from source to target CU,

Ed = α×Bc + β (7)

where Bc is the total amount of data volume (in bytes)

relocated from source to target and α, β are the regression

parameters. The values of regression parameters α and β are

derived using linear regression technique and are equal to

0.512 and 20.165, respectively.

E. Probability of User Mobility

Consider Γ as the distance matrix where each entry Γij

is the geographical distance in meters between DUs di and

dj . In a practical scenario, a mobile user is likely to move

to one of neighboring DU’s region. To simulate this, mobility

probability for a user moving from one DU region to other

is calculated. Thus, to assign high mobility probability to

neighboring DUs, the distance between DUs is normalized.

The normalized distance norm(i) for each DU di from all

other DUs dj such that j∈ Γi,∗ can be defined as,

norm(i) = (max(Γi,∗) + 1)− Γij (8)

The mobility probability Pij of a user moving from DU di to

dj s.t. j∈ Γi,∗ can be obtained as,

Pij =
norm(i)

D∑

j=1

norm(j)

(9)

Fig. 9 illustrates the handover based on mobility probability

Pij and demonstrates how it differs from the conventional

mobile network handover procedure. In this scenario, UE1 is

moving from coverage region of DU d1 at time t to coverage

region of DU d2 at time t + 1. As a result, UE1 will not

confront a handover because d1 and d2 are mapped to the

same CU. Whereas, UE2 moving from DU d2 to DU d3 will

Timestamp = 't'

d1

UE1

P12 > P13

d2

P21 > P23

d3

Timestamp = 't+1'

d1 d2 d3

Fig. 9: Illustration of handover process based on mobility probability Pij of
UEs moving from DU di to DU dj .

encounter a handover as it moves between those DUs which

are mapped to different CUs. But in a conventional mobile

network, both UE1 and UE2 would undergo handovers.

IV. OPTIMIZATION MODEL (APT-RAN)

The notation used in this optimization model are listed in

Table II.

Objective Function:

min
x,y,z,z′

:












C∑

c=1

(zc × costc)

︸ ︷︷ ︸

(A)

×
1

∑

∀i,j∈c

Pij

︸ ︷︷ ︸

(B)












+














∑

d∈D,c∈C,
such that

c 6=A(t−1)(d)

(wsd × ydc × costdc)

︸ ︷︷ ︸

(C)














(10)

Constraints :

D∑

d=1

(ydc × ld) ≤ (Cc × zc), ∀c ∈ C (11)

U∑

u=1

(xud(t)×Nu(t)) ≤ N ∀d ∈ D (12)

C∑

c=1

ydc = 1, ∀d ∈ D (13)

D∑

d=1

xud = 1, ∀u ∈ U (14)

ydc ≤ zc, ∀d ∈ D, ∀c ∈ C (15)

xud ≤ z
′
d, ∀u ∈ U , ∀d ∈ D (16)

xud ∈ {0, 1}, ∀u ∈ U , ∀d ∈ D (17)

ydc ∈ {0, 1}, ∀d ∈ D, ∀c ∈ C (18)

zc ∈ {0, 1}, ∀c ∈ C (19)

z′d ∈ {0, 1}, ∀d ∈ D (20)

There are three main components of the objective function

in the proposed optimization model denoted as A, B, and C

in Eqn. (10).

1) Term A minimizes the total energy consumption by

minimizing the total number of active CUs in the CU

pool.

2) Term B minimizes the number of handovers by mapping

DUs to CU whose sum of mobility probability (Pij) with

that particular CU is maximum.
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TABLE II: Notation used in the Apt-RAN Optimization Model

Notation Definition

ld Compute load at DU d ∈ D

Cc Capacity of CU c ∈ C

zc 1 if CU c ∈ C is active; otherwise 0

z′
d

1 if DU d ∈ D is active; otherwise 0

ydc 1 if DU d is mapped to CU c; otherwise 0

xud 1 if UE u is associated to DU d; otherwise 0

At Allocation matrix of all DUs to CUs at time t

At(d) Allocation of DU d ∈ D to CU c at time t

costc Energy cost of operating CU c ∈ C

costdc
Additional energy cost incurred in relocation of
DU d ∈ D to CU c ∈ C

wsd
Normalized weighted score of d ∈ D indicating
relocation impact

Pij Probability of user mobility from DU di to dj

Nu Total PRBs allocated to user u ∈ U

N Fixed number of PRBs available to each DU d ∈ D

3) Term C minimizes the additional energy incurred due

to relocations of DUs while also considering service

disruptions to users.

Eqn. (11) ensures that the total CU load does not exceed the

maximum rated capacity of the system. Eqn. (12) states that

the sum of PRBs allocated to all the users served by a given

DU should not exceed the PRB limitation of DU. To be more

specific, this equation sets a constraint for DUs in terms of

the maximum number of UEs that can be served by it in one

transmission Time Interval (TTI). Eqn. (13) ensures that each

DU is associated with exactly one CU. Similarly, Eqn. (14)

ensures that a UE can only be associated with exactly one

DU. Eqn. (15) indicates that DUs can only be mapped with

active CUs. Similarly, Eqn. (16) makes sure that a UE can

only be associated with an active DU. Eqns. (17-20) indicate

that ydc, xud, zc, and z′d are boolean variables.

The above optimization model minimizes the total energy

consumption of CU while considering the traffic heterogeneity.

It also minimizes the total number of handovers by ensuring

that neighboring DUs are mapped to the same CU based on

the mobility probability Pij calculated in Eqn. (9). However,

the proposed Apt-RAN model does not address the problem of

minimizing energy consumption at DUs.

A. Experimental Setup

To evaluate the performance of the proposed Apt-RAN

optimization model, a service region of 40 km * 40 km is

considered with different number of DUs, i.e., 10, 20, 30,

40, and 50 distributed geographically as per MHCPP-II, as

described in Section III-A. Large-scale fading and 3GPP

Outdoor Path Loss Model [18] are considered to generate the

channel gains. For simplicity, the transmission power of each

DU is kept as one Watt, shadowing as 10 dB, and fixed the

noise Power Spectral Density (PSD) as -184 dBm/Hz. The

essential simulation parameters are listed in Table III. User

traffic generated during a day is divided into three segments.

They are “Low Load” from 12AM to 8AM, “Medium Load”

from 8AM to 12 Noon and 8PM to 12AM, “High load” from

12 Noon to 8PM. A total of 240 time series samples are

collected using a Gaussian Mixture Model (GMM) as shown

in [26] where each sample is generated after a time interval
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Fig. 10: DUs running on different split options vs total number of DUs.

of 6 minutes. Each DU is associated with a certain number

of downlink flows, generated using a Poisson distribution

with rate parameter λ calculated as the mean of traffic load

during the 6 minutes. The proposed Apt-RAN model adopts

the concept of flexible functional splits based on the available

fronthaul bandwidth and link delay. The RAN splits for all

DU-CU pairs are given as inputs to the optimization model

for obtaining the optimal mapping of DUs and CUs based on

the given traffic load at cells. The number of DUs running on

split Option 2, Option 7, and Option 8 is shown in Fig. 10.

B. Performance Analysis of Apt-RAN Model

For the comprehensive performance evaluation, the pro-

posed optimization model Apt-RAN is compared with KORA

framework developed in [27]. KORA primarily aims at min-

imizing the CU pool energy and the total number of DU

relocations in the CU pool. In KORA, each DU-CU pair is

running on only split Option 8 with the assumption that enough

fronthaul bandwidth is available to run the split Option 8.

However, to maintain such high bandwidth, mobile operators

need to provide a dedicated link between each DU-CU pair,

which will significantly increase the operational cost. To make

a fair comparison with the KORA framework, the Apt-RAN

model is tuned just for split Option 8 and named as Apt-

RAN-FS8 (Fixed-Split-8). All the three models assure QoE

by minimizing the total number of affected GBR flows using

wsd factor, shown earlier in Eqn. (3). To compare and contrast

KORA, Apt-RAN-FS8, and Apt-RAN, five sets of experiments

are conducted with respect to 1) CU pool energy consumption,

2) the total number of DU relocations, 3) percentage of

affected GBR flows due to DU relocations, and 4) the total

number of handovers. To ensure better accuracy of results, bar

TABLE III: Simulation parameters

Parameter Value

Number of DUs 10, 20, 30, 40, and 50

Sampling Interval 6 Minutes

Simulation Duration 24 Hours

Total Generated Samples 240

DU workload Range Normalized in [0,1]

[w1, w2, w3, w4, w5] [0.10, 0.30, 0.20, 0.25, 0.15]

Time-varying rate parameter Gaussian Mixture Model
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number of DUs during Low Load (12AM-8AM).

 0

 2

 4

 6

 8

 10

 12

 14

10 20 30 40 50

E
ne

rg
y 

C
on

su
m

pt
io

n 
(K

W
h)

Number of DUs

KORA
Apt-RAN-FS8

Apt-RAN
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number of DUs during Medium Load (8AM-
12PM & 8PM-12AM).
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Fig. 13: Total energy consumption (KWh) vs
number of DUs during High Load (12PM-8PM).
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ber of DUs during Medium Load (8AM-12PM &
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Fig. 16: Total number of DU relocations vs num-
ber of DUs during High Load (12PM-8PM).

plots are plotted with a confidence interval of 99% with 30

seeds.

1) CU Pool Energy Consumption: Figs. 11-13 show

the total energy consumption in kWh during Low load,

Medium Load, and High Load, respectively. Compared to

KORA and Apt-RAN-FS8, the proposed Apt-RAN models also

consider Option 2 and Option 7 due to which effective load

at CU is less as some of the key functionalities are shifted to

DU side. Therefore, a large number of DUs can be mapped

to a single CU, resulting in a less number of active CUs.

Moreover, as discussed earlier in Section III-D, CU resides in

a General Purpose Processor (GPP) server, which contributes

to a significant portion of energy. Therefore, higher number

of active CUs results in higher energy consumption. From the

obtained results, we observe that Apt-RAN consumes nearly

38% and 40% less energy as compared to KORA and Apt-

RAN-FS8, respectively, for 50 DUs during the High Load. It is

also observed that during the Low Load, both KORA and Apt-

RAN-FS8 have almost the same energy consumption. However,

the energy consumption of Apt-RAN-FS8 increases slightly

(∼1%) more during the Medium Load and High Load. Both

KORA and Apt-RAN-FS8 require almost the same number of

active CUs in the CU pool. Therefore, the slight increase in

energy consumption is due to more number of relocations,

resulting in a higher relocation cost.

2) DU Relocations: To ensure better QoE for the users,

Apt-RAN optimizes the number of DU relocations. Figs. 14-16

show the number of DU relocations during Low load,

Medium Load, and High Load, respectively (in log scale). We

observe that Apt-RAN performs 61% fewer relocations than

KORA for 50 DUs during High Load. As mentioned earlier,

Apt-RAN maps a large number of DUs in a single CU due

to flexible splits. Therefore, only a few DUs are relocated to

other CUs. We also observe that Apt-RAN-FS8 relocates 3.4%

higher DUs than KORA as the latter also focuses on mapping

neighboring DUs to same CU. Therefore, by relocating a few

more DUs, Apt-RAN-FS8 is able to save more handovers.

3) Affected GBR flows: In the proposed optimization

model, the variable wsd (Eqn. (3)) ensures that the DUs

with a minimum number of GBR flows should be considered

for relocation to minimize the service disruption. Figs. 17-19

show the percentage of affected GBR flows. We observe that

Apt-RAN affects 56% fewer GBR flows than KORA, whereas

Apt-RAN-FS8 disrupts 4.8% higher number of GBR flows

compared to KORA for 50 DUs during High Load. In KORA,

when CUs underload or overload, a suitable DU is intelligently

selected and relocated to another CU to minimize the resource

wastage. Whereas in the case of Apt-RAN-FS8, a DU is

relocated based on the mobility probability Pij . Therefore,

Apt-RAN-FS8 incurs a slightly larger number of affected GBR

flows.

4) Handovers: In KORA, mobility probability is not con-

sidered in the optimization model, which makes KORA obliv-

ious to handover minimization. To be more specific, KORA

does not focus on consolidating neighboring DUs to the same

CU to reduce the number of handovers. Whereas in Apt-RAN,

by exploiting the concept of functional splits, a large number

of DUs can be mapped to the same CU. Hence, the probability
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of occurring a handover reduces as both source, and target

DU may get mapped to the same CU. Fig. 20 depicts that

Apt-RAN reduces nearly 83% and 92% of the total number

of handovers as compared to both Apt-RAN-FS8 and KORA

in a day. Apt-RAN-FS8 saves 58% of the total number of

handovers as compared to KORA for 50 DUs by mapping

neighboring DUs to the same CU. Though Apt-RAN-FS8 and

KORA are running on the same split option, we observe that

the number of handovers is considerably reduced in Apt-RAN-

FS8 whereas the energy consumption remains comparable in

both. To understand the effect of functional splits on energy

consumption, we compare the performance of Apt-RAN with

three static split options, i.e., Apt-RAN with only split Option 2

named as Apt-RAN-FS2, split Option 7 named as Apt-RAN-

FS7, and Apt-RAN-FS8, in Fig. 21. We observe that Apt-

RAN consumes 42% and 12% less energy than Apt-RAN-FS8

and Apt-RAN-FS7, respectively. Apt-RAN-FS2 is more energy

efficient than others in terms of energy consumed at CU pool,

but it gives fewer centralization advantages to the operators.

Whereas Apt-RAN-FS7 and Apt-RAN-FS8 provide more cen-

tralization benefits to the operators but require a very high

fronthaul bandwidth. Therefore, to have higher centralization

gains along with slightly relaxed fronthaul constraints and

balanced energy consumption, a flexible split based model like

Apt-RAN should be adopted.

C. Time Complexity Analysis of Apt-RAN Model

Consider a special case of the proposed Apt-RAN model

where the relocation cost, costdc, associated with relocations

of DU is zero. The mobility probability, Pij , is computed

based on the fixed geographical locations of the DUs, there-

fore, Pij becomes constant and can be ignored for the time

complexity analysis. We assume that all the CUs are active

and have sufficient number of PRBs to serve all the users.

Therefore, Eqn. (10) can be rewritten as,

min
y,z

:

C∑

c=1

(zc × costc) (21)

Constraints :

D∑

d=1

(ydc × ld) ≤ (Cc × zc), ∀c ∈ C (22)

C∑

c=1

ydc = 1, ∀d ∈ D (23)

Considering the above special case, Eqn (21) represents the

classical bin packing problem if CUs are considered as fixed-

size bins and DUs are considered as items with different sizes.

In the bin packing problem, items with different sizes are

packed into a finite number of bins having fixed capacity

in such a way that the number of bins used is minimized.

The bin packing problem is already proved to be NP-hard

problem [28]. Therefore, according to complexity theory, if a

special case of the problem is NP-hard, the more generic case

(costdc is not zero) is also NP-hard and thus making it an

exponentially solvable problem.
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Algorithm 1: Heuristic algorithm for Apt-RAN

Input : Previous allocation matrix At−1 and ld (Based

on the split option) for all DUs in D.

Output: Best possible allocation matrix At at time

epoch t.

1 while So is not NULL do

2 excess ←
(
∑

At(d)=c(ld)
)

− Cc ;

3 Find eligible DUs for relocation i.e., ld > excess;

4 Compute ζd for all eligible DUs;

5 CandidateDUList← DU with lowest ζd;

6 end

7 Sort CandidateDUList in descending order based on ld;

8 while CandidateDUList is not NULL do

9 Compute Pij ∀ CUs ∈ Sn and CandidateDU ∈
CandidateDUList;

10 Target CU β ← CU with maximum Pij ;

11 if ∃β then

12 Relocate CandidateDU to β;

13 else

14 Instantiate a new CU β
′

as target;

15 Relocate CandidateDU to β
′

;

16 end

17 end

18 while Su is not NULL do

19 Merge elements of Su w.r.t. capacity constraint and

max(Pij);

20 end

21 Return the new allocation matrix At;

D. Challenges of Apt-RAN Model

To implement Apt-RAN, mixed-integer-programming solver

called “Gurobi” is employed executing 4 concurrent threads in

an Intel Xeon E5620, 3.4 GHz machine running GAMS Ver-

sion 24 [29] under 64-bit Windows 7. The proposed Apt-RAN

model always leads to the optimal solution by minimizing

the total energy consumption at CU pool, the number of DU

relocations, affected GBR flows, and the number of handovers.

However, it takes longer execution time, i.e., in order of hours,

to converge to a solution. The total execution time taken by

the Apt-RAN model over 240 iterations is plotted in Fig. 22

for different number of DUs (10 to 50).

In a real-time deployment of NG-RAN, the decision of

relocation and consolidation of DUs has to be taken in a very

fine granularity of time, i.e., in order of few seconds, to react

to real-time tidal traffic variations at DUs. To deal with the

high computational cost of the Apt-RAN model, a lightweight

heuristic algorithm is proposed in the next section.

V. HEURISTIC/ONLINE ALGORITHM FOR APT-RAN

The motive of heuristic algorithm is to solve the DU-CU

mapping problem faster in a greedy manner by sacrificing

the actual optimality, accuracy, and precision in order to

decrease the execution time. In this section, a greedy heuristic

algorithm for Apt-RAN is proposed that is computationally

feasible in real-time as compared to the optimization model.

Proposed heuristic algorithm not only minimizes the total

energy consumption by reducing the number of active CUs

in CU pool but also minimizes the total number of handovers

by consolidating the neighbouring DUs in same CU based

on mobility probability Pij . Minimization in number of DU

relocations also ensures the QoE by not disrupting the user

services frequently. For simplicity, it is assumed that the

mobility probability Pij is already computed by the mobile

operator based on the geographical location of DUs. An

allocation matrix data structure At can potentially represent

the mapping at time t where each row corresponds to a DU,

and each column represents a CU. An entry At(i, j) is 1 if

DU i is hosted on CU j, else 0. When traffic demand increases

or decreases, the allocation matrix At(i, j) at time t may not

be a good allocation matrix at time (t+ 1). Let us assume,

• So be the set of overloaded CUs whose utilization ex-

ceeded the maximum threshold (say 90% of the total

server capacity).

• Su be the set of underloaded CUs whose utilization is

below the minimum threshold (say 30% of the total server

capacity).

• Sn be the set of non-overloaded CUs whose utilization is

below the maximum threshold and above the minimum

threshold, i.e., above 30% and below 90%).

• At be the allocation matrix of CU at timestamp t.

• Pij be the mobility probability of users moving between

DUi to DUj .

Algorithm 1 describes the pseudo code of the proposed

heuristic algorithm. The algorithm initially identifies a set

of overloaded and underloaded CUs in every iteration and

performs the following steps thereafter.

I. Identify the most suitable CandidateDU which has to

be relocated from overloaded CU.

II. Identify CUs from the set of non-overloaded CUs that

can act as target CUs. Instantiate a new CU if no non-

overloaded CU can accommodate the CandidateDU .

III. Determine the mobility probability Pij of the

CandidateDU with all the CUs identified in Step 2.

IV. Copy all the active memory pages of DU to the CU which

has the highest mobility probability Pij .

In the initial phase of our algorithm, a CandidateDU is

selected (Lines 2-5 in Algorithm 1) based on Minimum

Migration Cost (MMC), i.e., relocating a DU d ∈ D that has

the lowest relocation score (ζd). We calculate ζd based on

weighted score wsd (Eqn. (3) in Section III-B) and compute

load ld (Eqn. (1) in Section III-C) as follows:

ζd = (α× wsd) + ((1− α)× ld) | 0 ≤ α ≤ 1 (24)

DUs with lower value of ζd are preferred for relocation. In

Eqn. (24), α plays a decisive role in operator policy planning.

The higher value of α guarantees that DUs serving with least

number of GBR flows should be prioritized for relocation,

hence enhancing QoE for the users. Alternatively, a lower

value of α saves the energy cost by relocating a DU which

is having less computing load. Depending on whether the

operator policy is prioritizing QoE or energy, MMC can be

tuned accordingly in the heuristic algorithm.
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DUs in a day.
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Fig. 27: Effect of α on affected GBR flows and
energy consumption in heuristic for 50 DUs.
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Fig. 28: Effect of α on affected GBR flows and
energy consumption in heuristic for 100 DUs.

After selecting Candidate DUs in the first phase, the list of

candidate DUs, CandidateDUList, is sorted in descending

order based on their compute load so that residual utilization

at target CU is minimum (Line 7 in Algorithm 1). Identify the

target CU from the set of non-overloaded CUs, Sn, that has the

maximum mobility probability Pij with the CandidateDU

(Lines 9-11 in Algorithm 1). Relocate the CandidateDU to

the identified target CU (Line 12 in Algorithm 1). If there

is no such existing non-overloaded CUs to accommodate

the candidateDU , heuristic algorithm instantiates a new CU

(Lines 14-15 in Algorithm 1). For each underloaded CU

from the set Su, heuristic algorithm merges one or more

underloaded CUs (Line 19 in Algorithm 1) to scale down the

number of active CUs used in the CU pool.

A. Performance Analysis of Heuristic Algorithm

In this section, we evaluate the performance of the proposed

heuristic algorithm with the optimization model Apt-RAN and

state-of-art Oracle-type algorithm proposed in [30].

Compared to Apt-RAN model, the heuristic algorithm uses

a higher number of active CUs in the CU pool due to its

greedy approach. Hence, the heuristic algorithm has 11%

higher energy consumption than the Apt-RAN, as shown in

Fig. 23. On a similar notion, the number of handovers in

heuristic is increased by 16% for 50 DUs in a day, as shown

in Fig. 24.

Fig. 25 shows the scalability of the proposed heuristic

algorithm by varying the number of DUs. In contrast to the

execution time of the Apt-RAN model shown earlier in Fig. 22,

heuristic is light-weight and executes in a few seconds. This

feature makes the heuristic algorithm more competent for the

realistic deployment of NG-RAN in data centers.

In the proposed heuristic algorithm, by regulating parameter

α appropriately (Eqn. (24)), the operator can optimally choose

a satisfactory policy for better QoE to the users. The DU

with lowest relocation score, ζd, is chosen as candidate DU

for relocation. When α parameter is 0, the CandidateDU

for relocation will be chosen based on minimum DU load

irrespective of the number of GBR flows associated with it.

This will reduce the relocation energy but at the cost of higher

number of affected GBR flows. When α is 1, the relocation

score, ζd, is calculated based on weighted score, wsd, which

means the DU with minimum number of associated GBR flows

will be considered as the CandidateDU for relocation. This

will increase the energy consumption as the DU with higher

load may become the CandidateDU whereas the number of

affected GBR flows will be minimum. Figs. 26 to 28 illustrate

the trade-off between energy consumption and the number

of affected GBR flows by varying α for different number of

DUs (10 to 50). When the number of DUs in the system is

less, i.e., 10, beyond a specific value of α, there is no effect

on the number of GBR flows and energy consumption. But,

when the number of DUs to be served is higher, α should be

chosen wisely. For 100 DUs at α = 0, the heuristic algorithm

can save 18% energy consumption than that of α = 1, but

the number of affected GBR flows is increased by 38%. To

evaluate the energy consumption and number of handovers in

the simulation setup, suitable value of α is used, i.e., α = 0.12,

α = 0.34, and α = 0.42 for 10, 50, and 100 DUs, respectively.

Remark 2. Based on necessity, the mobile operator should

pick α wisely where two contrasting objectives (minimizing

energy consumption & minimizing the number of affected GBR

flows) are equally considered.
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Fig. 29: Comparison between Heuristic FS8 and Oracle-type Algorithm
for Total Energy Consumption in a day.
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Performance of the heuristic algorithm is also compared

with state-of-art Oracle-type algorithm proposed in [30]. In

this work, authors identify the problem of mapping DUs to

CU as a classical graph community detection problem [31]. By

maximizing the modularity metric of each community, nodes

in the graph with similar properties (same neighboring DUs

in this case) are clustered in the same community. Authors

did not consider any split specific topology in the proposed

work. Hence, our proposed heuristic algorithm is also tuned

to run only on fixed split Option 8, namely Heuristic-FS8

for a fair comparison. For 50 DUs, Heuristic-FS8 consumes

24% less energy than Oracle-type algorithm but faces 17%

more handovers for 50 DUs, as shown in Figs. 29 and 30.

Oracle-type algorithm mainly focuses on saving the number

of handovers by maximizing the modularity metric for each

community, which is an energy oblivious packing. Whereas the

heuristic algorithm proposed in this work intelligently maps

DUs to CU based on the mobility probability that saves both

energy and number of handovers.

B. Time Complexity Analysis of Heuristic Algorithm

Consider |C| as the number of CUs and |D| as the number

of DU loads that we want to assign. To identify overloaded

and underloaded CUs, the algorithm has to scan the list of

CU capacities which takes O(|C|) time. Similarly, to identify

the candidate DUs for relocation based on ζd parameter, the

algorithm takes O(|D|). Since a single CU cannot accom-

modate all the candidate DUs due to capacity constraint, it

has to find the candidate DUs with the maximum load which

requires the CandidateDUList to be sorted in descending

order. This can be done in O(|D|log|D|) in the worst case. As

the locations of DUs are fixed, the distance between all pairs of

DUs is computed in advance and stored in a matrix. Therefore,

when mapping neighboring DUs to the same CU, the distance

can be calculated in constant time, i.e., O(1). Combining all

the times, the overall time complexity of proposed heuristic

in the worst case is O(|D|log|D|), which can be solved in

polynomial time.

VI. RELATED WORK

Both consolidation and relocation mechanisms are ex-

tremely vital for efficient resource planning in 5G RAN.

Although RAN resource management in a data center is still

in its infancy, a few of the existing resource management

works are based only on the “bin packing” approach or

stochastic modeling to the computational resource consolida-

tion process. In [32], the authors presented a multi-dimensional

Markov model to evaluate the statistical multiplexing gain

(denotes the extent to which the resources can be shared

across multiple parties) of Virtual Base Station (VBS) pools

considering the user session level traffic dynamics. Although

this model considers the delay-tolerant traffic and expressions

for blocking probability, the performance w.r.t. spatio-temporal

traffic fluctuations are not considered in the gain calculation.

In [33], the authors proposed a bin packing formulation to the

BBU to VM packing on an iterative approach to minimize the

total number of active BBUs. However, they did not consider

the relevance of BBU relocations by tidal traffic variation. The

authors in [34] proposed a bin packing solution to consolidate

BBUs, which minimizes the energy consumption without

factoring the BBU (VM) migration scenario as described

before. On similar notion, the authors in [35] highlights a

dynamic RRU reassignment algorithm (synonymous with the

concept of CU migration) which minimizes the total number of

active servers in the cloud platform by considering the spatio-

temporal traffic variation, but without factoring migration

overhead. Authors in [36] focuses on minimizing total frame

delivery time completion time in C-RAN by jointly optimizing

user scheduling, transmission rates, and encoded messages of

each RRH. The optimization problem is relaxed by an online

approach which involves prediction of the completion time

resulting in possible associations among users, RRHs, encoded

messages, and transmission rate. The authors introduce a rate

aware instantly decodable network coding graph (RA-IDNC)

and formulate the relaxed version of the optimization problem

(Online approach) as maximum weight independent set over

the same graph. [37] proposes a hybrid C-RAN architecture

where baseband functionalities can be virtualized and split

at a different point. Different split options result in two site

processing (central and remote site) and introduce a mid-

haul in between. The authors propose an optimization frame-

work that jointly minimizes energy and mid-haul bandwidth

consumption by developing a constraint programming model,
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which finds out a balanced point for optimization of both

energy and bandwidth. The model is not scalable when the

problem size grows substantially. Authors in [38] present

a Virtual Network Embedding (VNE) algorithm, which is

formulated as the ILP model that jointly minimizes inter-

cell interference among small cells and fronthaul bandwidth

utilization by selecting proper functional split dynamically.

The model considers requested resources by different Mobile

Virtual Network Operators (MVNOs) and allocates resources

while optimizing bandwidth and inter-cell interference. Au-

thors in [39], propose a model for virtualized servers where

the problem of allocating the optimal number of VMs to the

cloud server is addressed. Initially, the number of VMs a server

can support is estimated, and then it is optimized using Monte

Carlo based evolutionary algorithms to minimize total energy

consumption at the cloud server. In this paper, the authors did

not study the performance based on functional splits, which

is a characteristic of 5G networks. Authors in [40] model the

RAN computational resources and evaluate the multiplexing

gain for different RAN functional splits. Based on this, authors

study the processing savings arising from the consolidation of

compute resources. Authors in this model did not consider the

variation in energy and multiplexing due to spatio-temporal

traffic heterogeneity. Authors in [41] examined the energy

consumption in network function virtualization using M/M/c

queuing network. Their algorithm saves 40% energy cost while

processing 500 flows using MATLAB simulation. In [42],

authors have scrutinized the concept of cell differentiation

and integration in C-RAN to maximize the network resources

without affecting the QoS. Dynamic BBU-RRH mapping has

been formulated as a linear integer problem which increases

the average throughput by 42% as compared to static mapping.

However, the energy consumption of their proposed model

is not studied in their work. Authors in [43] also modeled

BBU-RRH mapping and UE association problem as an ILP

problem. Furthermore, a time-efficient algorithm is proposed,

which performs close to the optimal solution. However, the

authors did not consider flexible functional split options in

their work. The authors in [44] leverage the concept of a

virtual base station to form an optimization problem to reduce

the number of handovers where future mobility information is

known. Authors also proposed a heuristic algorithm when the

following mobility information is unknown. Hyebin et al. [45]

proposed the Markov-based prediction algorithm to forecast

the next location of users in Heterogeneous Cloud Radio

Access Network) that lead to a reduction in the number of

handovers. The authors in [46] design a novel algorithm named

MAPCaching based on mobility aware proactive caching

strategy. That significantly outperforms the Greedy and EPC

caching strategies.

VII. CONCLUSIONS

To conclude, in this work we initially developed a real-

time prototype to study the variation in energy consumption

due to different functional split options. Based on the key

observations from the above prototype, a mathematical model

called Apt-RAN is developed based on flexible functional splits

that minimizes the total energy consumption and number of

handovers by efficiently mapping neighboring DUs to same

CU. To ensure QoE for the users, Apt-RAN also minimizes

the total number of relocations and affected GBR flows. The

proposed optimization model consumes 38% less energy, saves

92% of total handovers, reduces number of relocations by

61%, and affects 56% less GBR flows as compared to KORA

framework proposed in [27]. A lightweight and scalable

heuristic algorithm is proposed to reduce the computational

complexity of the Apt-RAN model. The proposed heuristic

algorithm has 11% higher energy consumption and 16% higher

number handovers as compared to Apt-RAN due to its greedy

nature. When compared to Oracle-type algorithm that focuses

mainly on saving number of handovers, Heuristic-FS8 saves

24% more energy at the cost of slightly more number of

handovers.
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