
Journal of Network and Computer Applications 168 (2020) 102737

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

RAN-aware adaptive video caching in multi-access edge computing
networks

Shashwat Kumar a,b,∗, Sai Vineeth Doddala c, A. Antony Franklin a, Jiong Jin b

a Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad, India
b School of Software and Electrical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122,
Australia
c Samsung R&D Institute, Bangalore, India

A R T I C L E I N F O

Keywords:
Multi-access Edge Computing (MEC)
Radio Network Information (RNI)
Video caching

A B S T R A C T

Videos are expected to be a primary contributor to an anticipated massive surge in mobile network data. Caching
the videos within the mobile network can significantly reduce the network load and Operational Expenditure
(OPEX) for mobile network operators. Multi-access Edge Computing (MEC) can enable the video caching by
providing processing and storage capabilities within the network. However, content providers usually employ
Dynamic Adaptive Streaming over HTTP (DASH) for video streaming, which contains multiple bit-rate rep-
resentations of videos. Constrained by its capacity, MEC can not cache all representations of popular videos.
Video transcoding mitigates this issue to a certain extent by converting the higher available video bit-rate to
a requested lower one; but, it can quickly exhaust the available edge processing power by transcoding a large
number of videos in parallel. Therefore, caching appropriate video bit-rates that can serve the maximum number
of users in the network is a non-trivial problem. To resolve this problem and to efficiently utilize the resources
(processing and storage) at the network edge, we took a non-traditional approach for video caching that utilizes
the network information provided by MEC’s Radio Network Information (RNI) Application Program Interface
(API). In particular, RNI API provides Radio Access Network (RAN) status information that can be employed to
estimate the probability distribution of requested video qualities. In this work, we formulate the video caching
problem as an Integer Linear Programming (ILP) for the hit-rate maximization. Since the optimization problem
requires the knowledge of all future requests, it obviously cannot be used in real-time. Therefore, we develop
a RAN-aware Adaptive VidEo cachiNg (RAVEN) method that uses network information to make an informed
decision for video bit-rate selection in video caching coupled with transcoding and maximizes the number of
served users form the network edge. Simulation results demonstrate that the RAVEN significantly outperforms
state-of-the-art algorithms in the domain and performs closer to the optimal solution.

1. Introduction

According to the Cisco Visual Networking Index (VNI) forecast
(Forecast, 2019), smartphone data traffic will surpass the PC traffic
by 2022 and account for 44% of the total IP traffic. By 2020, mobile
data will reach 77.5 exabytes per month and the existing cellular net-
work backhaul will face severe congestion if Mobile Network Opera-
tors (MNOs) do not take some preventive measures. Interestingly by
2022, IP video traffic will account for 82% of all the IP traffic. MNOs
should optimize video content delivery in particular to avoid back-
haul congestion. One simple method to alleviate network congestion,

∗ Corresponding author. Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad, India.
E-mail addresses: cs15resch11011@iith.ac.in (S. Kumar), cs14btech11011@iith.ac.in (S.V. Doddala), antony.franklin@iith.ac.in (A.A. Franklin), jiongjin@swin.

edu.au (J. Jin).

due to data surge, is network capacity expansion, which is not always
viable and also requires a significant capital investment. Obviously, net-
work operators need alternative methods to deliver this vast amount
of data without congestion. In-network-caching is a promising solu-
tion to handle backhaul congestion, which caches the popular content
within the cellular network. Other than avoiding congestion, caching
the frequently accessed content within the network also reduces the
transit service payments to Internet Service Providers (ISP). It thus
reduces the operational cost of the cellular network and improves the
user’s quality of experience through fast content delivery by avoiding
long-distance transmission (Belshe, 2010). Various architectures such

https://doi.org/10.1016/j.jnca.2020.102737
Received 5 November 2019; Received in revised form 15 April 2020; Accepted 31 May 2020
Available online 4 July 2020
1084-8045/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2020.102737
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102737&domain=pdf
mailto:cs15resch11011@iith.ac.in
mailto:cs14btech11011@iith.ac.in
mailto:antony.franklin@iith.ac.in
mailto:jiongjin@swin.edu.au
mailto:jiongjin@swin.edu.au
https://doi.org/10.1016/j.jnca.2020.102737


S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

as Content-Centric Networking (Jacobson et al., 2009), Information-
Centric Networking (Abdullahi et al., 2015), and Multi-access Edge
Computing (MEC) (ETSI - Introductory Technical White Paper) enable
the MNOs to cache the content within the network. Being one of the
key technologies for future 5G networks (ETSI - MEC in 5G Networks)
and its compatibility with contemporary cellular networks, MEC befits
in-network-caching in the cellular network. The European Telecommu-
nications Standards Institute (ETSI) standardized MEC to be compati-
ble with the Network Function Virtualization (NFV) framework, which
makes it incredibly versatile for the deployment of services or applica-
tions in cellular networks. MEC brings the cloud computing capabilities
(i.e., storage and computation) at the network edge (e.g., base station),
which enables the support for Ultra-Reliable Low Latency Communi-
cation (URLLC) and high bandwidth applications. Moreover, through
various Application Program Interfaces (API) such as Radio Network
Information (RNI), MEC opens the possibility for intelligent services
that can make an informed decision using network and context infor-
mation. Conceiving it as an integral part of future cellular networks, we
adapted the MEC architecture in this work.

Most of the video streaming services use adaptive video streaming
to serve a diverse set of users with a good quality of experience. Adap-
tive video streaming methods such as Dynamic Adaptive Streaming over
HTTP (DASH) store different bit-rate versions of a video on the server.
For a video request, based on user device characteristics and available
bandwidth, an appropriate video bit-rate is selected to ensure the best
user experience. Video content providers (e.g., YouTube) offer multiple
(five to six) bit-rate representations of a video to befit the user require-
ments. If an MEC server at the edge of the network caches all the bit-
rate versions of the videos, the storage space of the MEC will not be
sufficient. For this reason, even with the known popularity distribution,
the system cannot cache all representations of the popular videos and
thus video caching poses a unique challenge compared to caching the
content which has only one representation. Video transcoding is able to
solve this problem to some extent by converting a higher bit-rate ver-
sion of a video to a desired lower bit-rate version (Kumar and Vineeth,
2018). Hence, by caching only the highest bit-rate version and using
the transcoding to serve the lower bit-rate video requests, the storage
exhaustion problem could be mitigated. However, transcoding is a com-
putation intensive task and transcoding multiple video streams in par-
allel can itself exhaust the limited computational resources at the MEC.
Consequently, it is important to find an effective solution that utilizes
the computation and storage resources on MEC by caching the appro-
priate bit-rates of the videos. To solve the processing power exhaustion
problem without caching all bit-rate version of videos, a few selected
bit-rate versions of a video should be cached to avoid transcoding for
each lower bit-rate video request. In this case, selecting an appropriate
video bit-rate version for caching is a nontrivial problem, because bit-
rate selection, in adaptive video streaming, dominantly depends upon
the available network throughput to the client. If the available through-
put is known to the cellular network, this information can be utilized
to make a wise video caching decision. RNI API (ETSI - Radio Network
Information API) of MEC (ETSI - Technical Requirements) makes net-
work information available to various services deployed on the MEC
platform. Applications or services deployed on MEC are able to mea-
sure the available throughput of a user in the cell by using RNI API,
and same can be utilized to estimate the expected video bit-rate of the
user requests. In this work, we formulate the caching problem as an
Integer Linear Program (ILP) that maximizes the cache hit ratio subject
to the cache capacity and processing power constraints of the MEC. It
is not possible to solve the ILP for each user request or the requests in a
time slot in real time, because it takes a significant time due to its NP-
completeness. Hence, we design a RAN-aware Adaptive VidEo cachiNg
(RAVEN) method that exploits the RNI API to determine the probabilis-
tic video bit-rate to make caching decision. The RAVEN method attains
a balance in the processing power and storage utilization at MEC by
selecting appropriate bit-rate versions of videos to cache. The main con-

tributions of this paper are summarized as follows:

∙ We introduce a central cache catalog, namely, central cache man-
ager, which ensures the collaboration and cache consolidation
among the MEC servers. It helps in avoiding the data duplication
in MEC cache network, and enables the storage and computation
resources sharing among MEC servers.

∙ We measure the scalability of the standalone transcoding solution
on a testbed to investigate its feasibility.

∙ We formulate the multibit-rate video caching and transcoding as an
ILP based optimization problem with an objective of maximizing the
hit ratio in the MEC cache network.

∙ We design a RAN-aware adaptive video caching (RAVEN) method
that takes advantage of the RNI API to estimate the requested video
bit-rate and utilizes this information for cache replacement deci-
sions. The RAVEN method reduces the backhaul traffic and conse-
quently reduces the OPEX (operational cost) for the mobile network
operators.

The rest of the paper is organized as follows. Previous works on
content caching are discussed in Section 2. In Section 3, we explain the
motivation and define the problem statement. Section 4 highlights the
details of the proposed RAVEN method. Results based on extensive sim-
ulations are presented and analyzed in Section 5. Finally, we conclude
the work in Section 6.

2. Related work

Over the years, many solutions have been set forth to solve the
network congestion problem. Content Delivery Networks (CDNs) have
been presented as a viable solution to minimize the network congestion
by storing the data near the consumers (Liu et al., 2016). Other solu-
tion like Information Centric Networks (ICNs) (Kutscher et al., 2016;
Abdullahi et al., 2015; de Assunção et al., 2018) and Data-Oriented
Network Architecture (DONA) (Koponen et al., 2007) tried to address
the network congestion by redesigning the network itself. Some authors
suggested the deployment of CDN in the cellular network to serve con-
tent to the users from within the mobile network (Liu et al., 2016). By
doing so, MNOs can reduce the load on backhaul links and the oper-
ational cost of downloading data through ISPs. But being the primary
cause for network congestion, it is essential to optimize the video traffic,
and most of the solutions do not consider the unique attributes of video
data. Therefore, they are not very effective in handling the congestion.

Edge technologies such as MEC and fog computing offer solutions
to deploy micro cloud services at the edge of the network (ETSI - Intro-
ductory Technical White Paper; Hu et al., 2017). With the increasing
demand for video streaming, various solutions have been introduced
to cache the data in the cellular network (Shanmugam et al., 2013;
Pedersen et al., 2016; Tran et al., 2017a). MEC offers the storage and
computation capabilities at the edge of the network (ETSI - Introduc-
tory Technical White Paper). But, MEC servers have limited computa-
tion and storage resources; therefore, these resources should be engaged
with diligence. Considering the limited resources on MEC, collaborative
caching has been proposed to increase the video hit-ratio and share the
resources among the MEC servers (Tran et al., 2017b). Gharaibeh et al.
(2016) came up with a collaborative caching algorithm to minimize the
total cost paid by the content providers in a multi-cell coordinated sys-
tem. Ostovari et al. considered unlimited cache space in their model to
minimize the aggregated caching and download cost for corroborative
caching (Ostovari et al., 2016). In Bastug et al. (2014), files are proac-
tively cached during off-peak periods based on popularity, correlations
among users, and file access patterns and these files are disseminated
to user’s social ties via D2D communications. For edge caching, Wang
et al. (2014) deployed the content-centric networking within the cel-
lular network to minimize the delay and traffic load. Shanmugam et
al., 2013 used the femtocell-like base stations for caching with weak
backhaul links but large storage capacity.

2



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

Zhang et al. (2018) proposed a cooperative edge caching architec-
ture with the help of mobile edge computing but they did not consider
the different representation (multiple bit-rates) of same data. Bilal et
al., 2019 proposed a collaborative caching and transcoding scheme to
minimize the CDN cost and video access delay. Irrespective of network
conditions, their algorithm, based on processing availability, fetches the
higher video bit-rates and transcode it to serve the users and uses the
LRU approach for cache replacement. In contrast, the proposed method
utilizes the RAN information to improve caching performance and
employ a profit-based strategy for cache replacement. Moreover, our
method delivers substantial improvement without the use of transcod-
ing, as well. Mehrabi et al. (2018) formulate the QoE-traffic optimiza-
tion with collaborative edge caching as an integer non-linear program-
ming (INLP) optimization problem. They use network information for
bit-rate adaptation and proposed a retention based caching algorithm.
In contrast to their work, we use the network information for video
bit-rate selection in cache replacement and propose an efficient use
of transcoding to serve different bit-rates to the users. Tran and Pom-
pili (2019) proposed proactive cache placement and request scheduling
scheme. Their caching algorithm only works when video popularity is
known when popularity is not known they use the LRU algorithm. On
the other hand, our proposed method is a reactive caching scheme and
works well with known and unknown popularity. One other difference
is the fact that we use the cache consolidation along with collaborative
caching to boost the performance.

Most of the works mentioned above deal with the caching in which
content has only one version to be cached, however, the Adaptive Bit
Rate (ABR) protocol such as DASH supports multiple bit-rate versions
of a video for different network conditions. Therefore, video caching
becomes more challenging and requires intelligent decision making to
select appropriate bit-rate versions of the video for caching. Transcod-
ing a video from higher to lower bit-rate version is one of the solu-
tions to handle the multiple versions of the same video content. Shen
et al. (2004) discussed various techniques to transcode a video from
higher bit-rate to lower bit-rate version and deduced that compressed-
domain based approaches such as bit-rate reduction and spatial res-
olution reduction are most effective. Pederson et al. proposed caching
and processing for multi-bitrate video streaming (Pedersen et al., 2016),

unfortunately they do not consider the collaborative scheme of multiple
caching servers. In Joint Collaborative Caching and Processing (JCCP)
(Tran et al., 2017b), a collaborative caching and transcoding solution is
introduced in which MEC servers collaborate to share the cached con-
tent and perform the transcoding if a higher bit-rate version is available
in the cache. However, their scheme considers replication of the con-
tent among the cache servers that results in storage waste; furthermore,
JCCP does not utilize the bit-rate information in caching decision as
well. On contrary, we design a consolidated caching method in which
content is not replicated within the MEC cache network and it cap-
italizes on the network information to select the appropriate bit-rate
version for caching.

3. Motivation, system architecture, and problem formulation

3.1. Motivation

A multifold increase in the data passing through the mobile net-
work is anticipated, and video data is expected to be a primary con-
tributor to it (Forecast, 2019). Caching the videos within the mobile
network, with the help of MEC, can help in reducing the network load
and OPEX for mobile network operators. However, in video stream-
ing, content can have multiple representations (bit-rates) and tradi-
tional caching schemes are agnostic to it. MEC, at the network edge,
can not cache all representations of popular videos because of capac-
ity constraints. Therefore, caching appropriate bit-rates of the videos,
which can serve the maximum number of users, is a vital decision that
impacts the caching performance. Video transcoding, which can convert
a high bit-rate video to lower bit-rate, provides an ingenious solution to
this issue. However, exclusively depending on the transcoding, by only
caching the highest available bit-rate video, may lead to a processing
power crunch on MEC servers.

We empirically assess video transcoding scalability on a simple
testbed using ffmpeg (FFmpeg) without using any specialized hard-
ware for video encoding. The main objective is to evaluate the video
transcoding scalability, and not to observe the correlation between
engaged CPU cores and number of parallel transcodings, therefor the
evaluation is carried out only with two CPU configurations. In Table 1,

Table 1
Possible number of real-time parallel transcodings from higher to lower resolution.

Using 8 Cores (2.4 Ghz) Using 4 Cores (2.4 Ghz)

720p 480p 360p 240p 720p 480p 360p 240p

1080p 3 6 10 14 2 3 4 6
720p – 7 12 18 – 4 6 9
480p – – 14 22 – – 8 11

Fig. 1. (a) Time taken to transcode videos of different playtime from a higher bit-rate input video to a lower bit-rate video. (b) Supportable video bit-rate
(q1 > q2 > q3 > q4) based on the UE distance from the cellular Base Station (BS).

3



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

the first column of the table contains the source video bit-rate and the
second row indicates the target bit-rate for transcoding, and the values
in the cells present the number of feasible parallel transcodings. There
are two noteworthy deductions from the results in Table 1: first, the
number of parallel transcodings depends on the source and target video
bit-rates; second, video transcoding is not very scalable because in the
best-case scenario (480p → 240p transcoding) the system can serve only
22 users.

Furthermore, Fig. 1(a) unveils that it takes less time to transcode
from a closest higher bit-rate version e.g., transcoding to 240p target
bit-rate from higher bit-rate sources (1080p, 720p, 480p, and 360p),
360p → 240p transcoding takes the minimum time. Therefore an ade-
quate video bit-rates selection, for caching, should maximize the num-
ber of served users with optimal use of transcoding. In a mobile net-
work, UEs’ downlink throughput, which is utilized to determine the
video bit-rate, profoundly depends on its distance from the base station.
We simulate an LTE network in NS3 and results in Fig. 1(b) shows that
the user who is further away from the BS tends to have lesser through-
put and, consequently, a lower video bit rate. Network information uti-
lization can improve video caching performance. For example, if most
of the users are at the cell edge, then they are likely to get a lower
downlink throughput and expected to consume the video in a lower
bit-rate version. So, in this scenario, it is not desirable to cache a higher
bit-rate video at the network edge, which might be requested only by
some users who are near the base station and getting a higher band-
width. Since resources at the edge are limited, bit-rate agnostic caching
solutions are not effective for video caching. Using RNI API, MEC can
provide the network information, which can significantly enhance the
cache performance. In this work, we propose a solution that uses the
network information to cache appropriate video bit-rates coupled with
transcoding to improve the video caching performance.

3.2. System architecture

Fig. 2 depicts the system architecture, where MEC servers are
deployed alongside the eNBs in a cellular RAN, providing computation
and storage capabilities to enable caching at the edge of the network.
MEC servers collaborate to share their computing and storage resources.
If an MEC server caches a video, then the other MEC servers are able
to fetch the video and serve the users without caching it locally. The
cache architecture has the following components:

Cache Storage: Cache storage caches the videos for future user
requests and managed by the local cache manager.

Local Cache Manager: Local cache manager resides on the MEC
server at the network edge. On receiving a video request, local cache
manager searches for the video in the local cache on the MEC server.
If the video is not available locally, the local cache manager sends
the request to the central cache manager for the video location (MEC
server) and forwards the received location to the streaming server.
When a video is cached or gets replaced in the local cache, the local
cache manager propagates this information to the central cache man-
ager.

Central Cache Manager: Central cache manager keeps track of all
the videos that are cached in the MEC network. Central cache manager
empowers the collaboration and cache consolidation among the MEC
servers to avoid replication of the same video in the cache network.

Streaming Server: The streaming server on each MEC server
streams the requested videos to the users by fetching the videos from
the cache. If the streaming server fetches the video from the main con-
tent server, then the streaming server caches the video in the local
cache.

Transcoder: Transcoder converts a video segment from high bit-
rate to a requested lower bit-rate version. After transcoding, transcoder
forwards the video segments to the streaming server to serve the user.

3.3. Problem formulation

Definitions of the key notation used in this work are given in
Table 2.  denotes the set of all eNBs with MEC deployment. Cache
capacity of an MEC server j is Mj, where j ∈  and Cj denotes uti-
lized cache storage. A user sends request for video vq ∶ v ∈  in quality
q ∶ q ∈  at server j and the size of a video v of quality q is denoted
with rvq

∶ rvq
> 0 (as size of a file is always positive number). The prob-

ability of a user, in an eNB, requesting the video of quality q ∶ q ∈  is
pq that can be computed with the help of RNI API. The probability of a
user requesting a video v ∶ v ∈  , pv, is measured by video popularity
distribution. Either content provider can provide the video popularity
distribution or MEC be able to learn it based on user requests.

The variable c
vq
j ∈ {0,1} ∶ j ∈  , v ∈  , and q ∈  indicates if a

video v in quality q is cached on an MEC server j. If MEC server j caches
the video vq then c

vq
j = 1, otherwise c

vq
j = 0. To show how (with or

without transcoding) and from where the video is fetched to serve a
user request vq, we define two binary variables 𝜌 and 𝜁 . If MEC server j
serves the video request vq from its cache or cache of MEC server k then
𝜌

vq
j = 1 or 𝜌

vq
k = 1 ∶ j, k ∈  , j ≠ k respectively. Binary variable 𝜁

yvq′
x =

1 when a video vq′ is fetched from MEC x and transcoded at server y

Fig. 2. MEC video caching system architecture.

4



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

Table 2
Notation.

Representation Meaning

 Set of all video files
 Set of available qualities
 Set of cache nodes
j Set of request on eNB j
Qmax,Qmin Highest and lowest available video bit-rate
Nj Cache node located at eNB j
Pj Processing power capacity at MEC on eNB j
Pj Unused/available processing power at MEC on eNB j
Pq′→q Processing power required to transcode video from bit-rate q′ to q where q < q′

Pmin Minimum processing required to perform transcoding
pq Probability that a user will request for video in quality q
pv Probability of a user requesting the video v
rvq Size of the video v in quality q
Mj Caching capacity of MEC server j
Cj Filled cache size of MEC on eNB j (Cj ≤ Mj)
c

vq
j Indicate that video v in quality q is cached at MEC server j
𝜌

vq
x Indicate that video vq is fetched from MEC server x

𝜁
yvq′
x Indicate that video vq′ is fetched from MEC server x and transcoded at MEC server y to serve user request vq

to serve a the video request vq otherwise 𝜁
yvq′
x = 0. When serving MEC

j performs the transcoding, to serve video request vq, after fetching the

video vq′ from its cache or some other server k then respectively 𝜁
jvq′
j =

1 or 𝜁
jvq′
k = 1 ∶ q′ > q. In other case, when MEC server k transfers the

requested video vq to serving MEC j after locally transcoding from vq′

then 𝜁
kvq′
k = 1 ∶ q′ > q. If video request vq can not be served locally

then it is fetched from the main content server which is represented
by Ovq = 1. When a user requests a video, system fulfills the request
following only one of the above cases, and the following constraint
enforce this condition

𝜌
vq
j + 𝜁

jvq′
j +

∑
k≠j

(𝜌vq
k + 𝜁

kvq′
k + 𝜁

jvq′
k ) + Ovq = 1; ∀j, k ∈  , v ∈ 

The system objective is to serve most of the requests from the MEC
servers hence to maximize the hit ratio. A video request that is served
by MEC servers in the network is regarded as a cache hit, and if the
content server serves the content, a cache miss. The objective function
of the formulation for a cache hit maximization is as follows

Cache Hits (H) =
∑
j∈

∑
vq∈Rj

(𝜌vq
j + 𝜁

jvq′
j +

∑
k≠j

(𝜌vq
k + 𝜁

kvq′
k + 𝜁

jvq′
k ))

We model the video caching as a hit-rate maximization problem, so
the MEC server at the network edge can serve most of the user requests.
Available processing power and cache size on MEC servers are imposed
as constraints for the formulation. The objective function in Eq. (1a)
represents the number of cache hits. Constraints in Eqs. (1b) and (1c)
make sure that decision variables (𝜌

vq
j and 𝜌

vq
k ) are set to one only if

vq is cached on MEC server j or k, respectively. The Constraints in Eqs.

(1d), (1e) and (1f) ensure that 𝜁
jvq′
j , 𝜁

kvq′
k , and 𝜁

jvq′
k set to one, when

video v is cached in higher bit-rate version q′ and need to be transcoded
to the requested bit-rate q. The Constraint in Eq. (1g) administrator

maximize
∑
j∈

∑
vq∈Rj

(𝜌vq
j + 𝜁

jvq′
j +

∑
k≠j

(𝜌vq
k + 𝜁

kvq′
k + 𝜁

jvq′
k )) (1a)

subject to

𝜌
vq
j ≤ c

vq
j , ∀j ∈  , v ∈  , q ∈  (1b)

𝜌
vq
k ≤ c

vq
k ,∀k ∈  , v ∈  , q ∈  (1c)

𝜁
jvq′
j ≤ min(1,

Qmax∑
q′=q+1

c
vq′
j ),∀j ∈  , v ∈  , q ∈  (1d)

𝜁
jvq′
k ≤ min

⎛⎜⎜⎝1,
Qmax∑

q′=q+1
c
vq′
k

⎞⎟⎟⎠ ,∀j, k ∈  , j ≠ k, v ∈  , q ∈  (1e)

𝜁
kvq′
k ≤ min

⎛⎜⎜⎝1,
Qmax∑

q′=q+1
c
vq′
k

⎞⎟⎟⎠ ,∀k ∈  , v ∈  , q ∈  (1f)

𝜌
vq
j + 𝜁

jvq′
j +

∑
k≠j

(
𝜌

vq
k + 𝜁

kvq′
k + 𝜁

jvq′
k

)
+ Ovq = 1,

∀j, k ∈  , j ≠ k, v ∈  , q ∈  (1g)

∑
vq∈Rj

rvq
c
vq
j ≤ Mj,∀j ∈  , v ∈  , q ∈  (1h)

∑
vq∈Rj

Pq′→q

⎛⎜⎜⎝𝜁
jvq′
j +

∑
k≠j,k∈

𝜁
jvq′
k

⎞⎟⎟⎠+
∑

k≠j,k∈

∑
vq∈Rk

Pq′→q𝜁
jvq′
j ≤ Pj,

∀j, k ∈  , j ≠ k, v ∈  , q′, q ∈ , q′ > q (1i)

𝜌
vq
j , 𝜌

vq
k , 𝜁

jvq′
j , 𝜁

kvq′
k , 𝜁

jvq′
k ,Ovq ∈ {0,1},∀j, k ∈  , j ≠ k, v ∈  , q ∈  (1j)

that content is fetched from only on place; either from an MEC server
in the network or the main server. The Constraint in Eq. (1h) makes
sure that the system does not violate the cache capacity, and the con-
straint in Eq. (1i) puts upper bound on consumed processing power.
The formulated problem is an ILP and proved to be NP-Complete in
Theorem 3.1, therefore it cannot be solved in polynomial time. More-
over, knowledge of all the future video requests is required to solve
the ILP and that is unattainable, so formulated ILP cannot be solved in
real time. Therefore, we design a method which uses the RNI and video
popularity distribution and makes the caching decision in real time. The
offline solution of ILP is regarded as an optimal benchmark to compare
the performance of the proposed method.

Theorem 3.1. The video caching problem in Eq. (1a) is NP-complete.

Proof. Feasibility of any given solution of Eq. (1a) can be checked
in polynomial time, thus the problem is NP. Now, we show that prob-
lem is NP-hard through the reduction of an instance of 0–1 knapsack
problem, which is known to be NP-complete, to our problem. In the
collaborative environment, a set of MEC servers on eNBs can be consid-
ered as a knapsack with the capacity equivalent to cache size, the profit
of caching (users served from the edge) a video as the item’s value,

5



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

and storage space requirement for caching as the weight of the items.
Then the knapsack problem is naturally transformed into the problem
of maximizing caching benefits of MEC servers. Hence the 0–1 knapsack
problem can be reduced to the problem defined by Eq. (1a), with a one-
to-one mapping between a set of MEC servers and knapsack. Therefore
the solution of Eq. (1a) will correspond to the solutions of the knapsack
problem.

Algorithm 1 RAVEN Algorithm.

Input: User request (vq) for a video v in quality q on MEC
server j.
Initialize: Available processing power P1,… ,PN = P.
Initialize: Cache on MEC servers C1,… ,CN = 𝜑

1: for j ∈ 1,… ,N do
2: for each request vq on MEC j do
3: if c

vq
j == 1 then # vq is cached on serving MEC.

4: Serve the user from the cache on MEC j.
5: else if c

vq
k == 1; k ≠ j then

6: Fetch the video from MEC server k and serve
the user.

7: else if c
vq′
j == 1 and Pq′→q < Pj; q′ > q then

8: Transcode the video (vq′ to vq) on MEC j and
serve the user.

9: Pj = Pj − Pq′→q # for transcoding duration
10: CacheReplacement(vq,Cj)
11: else if c

vq′
k == 1 and Pq′→q < Pk; q′ > q, k ≠ j

then
12: Fetch the video from MEC k after

transcoding (vq′ to vq).
13: Pk = Pk − Pq′→q # for transcoding duration
14: CacheReplacement(vq,Cj)
15: else if c

vq′
k == 1 and Pq′→q < Pj; q′ > q, k ≠ j

then
16: Fetch the video from MEC k and transcode

(vq′ to vq) on MEC j.
17: Pj = Pj − Pq′→q # for transcoding duration
18: CacheReplacement(vq,Cj)
19: else
20: Fetch the video (vq) from content server and

serve the user.
21: CacheReplacement(vq,Cj)
22: end if
23: end for
24: end for

4. RAN-aware adaptive VidEo cachiNg (RAVEN)

We propose RAVEN for multi-bitrate video caching in the cellu-
lar network through MEC. The proposed caching algorithm makes the
caching decision based on the value of caching profit, where profit rep-
resents the expected number of satiable requests on caching a video in
a given bitrate. The video popularity, network conditions, and process-
ing power availability affect the value of caching profit. RAVEN avoids
the content replication in the caching network by employing coopera-
tion among the MEC servers which enables a MEC to serve the videos
that are cached on the other MEC servers in the network. The proposed
algorithms strive to maximize the hit-ratio by caching the videos with
higher profits.

Algorithms 1 and 2 represent the procedures used in RAVEN for
online caching and transcoding. The algorithm starts with empty caches
and video catalogs and P unit of available processing power. On a
request (vq) of video v in quality q on MEC server at eNB j, Algorithm 1
first checks if vq is cached on MEC j (line 3). If the video is available

in the local cache (c
vq
j == 1) then it is served to the users locally. Oth-

erwise, the algorithm searches for vq on the other MEC servers with
the help of central cache manager. If the video is cached in one of the
other MEC servers (c

vq
k == 1; k ≠ j), then the video is fetched from there

and served to the user (line 5). If the video is not available on any of
the MEC servers in the requested quality, then the algorithm searches
for a higher bit-rate (q′) version of the same video (v) on the local
MEC server (j) (line 7). When the video is cached (c

vq′
j == 1; q′ > q)

locally in higher bit-rate and MEC server has sufficient available pro-
cessing power (Pj > Pq′→q) to transcode the video, then user is served
after transcoding of the video to the bit-rate q. If neither the video is
cached (in requested bit-rate) on local MEC server nor the local MEC
server have the processing power to transcode the video (when a higher
bit-rate video is cached), then using central cache manager algorithm
searches for the video on the other MEC servers in the network (line
10). If the video is available on one of the other MEC servers in higher
bit-rate, then it is transcoded either on local MEC server or on the MEC
server where it is cached based on processing power availability (prefer-
ably on the other MEC server) and streamed to the user (line 14). If
the requested video is not available on any of the MEC servers in the
network, either in the same bit-rate or higher bit-rate, then the video
is fetched from the content server and cache replacement algorithm
(Algorithm 2) is used to make the caching decision (line 19).

Algorithm 2 RAVEN’s Cache Replacement Algorithm.
Input: New video (vq) v in quality q and current cache (Cj).

1: if (Cj + rvq
) ≤ Mj then # If cache has empty space

2: c
vq
j = 1

3: Cj = Cj + rvq

4: else if Pj ≥ Pmin then
5: Find q″:q″ ≤ q and

∑q
i=q″ Pq→i ≤ Pj

6: Calculate dv
qq″ # indirect profit for caching video v

7: dv′
min = min Cd

j # cached video v′ with minimum
profit value

8: if dv′
min < dv

qq″ then # checking if profit for v is
greater than v′

9: Replace v′ with vq
10: end if
11: else if Pj ≤ Pmin then # processing power is not

available.
12: Calculate dv

q # direct profit for caching video v
13: dv′

min = min Cd
j

14: if dv′
min < dq

v then
15: Replace v′ with vq
16: end if
17: end if

For cache replacement, we introduce a profit based cache replace-
ment algorithm (Algorithm 2) in which the profit is defined as hits
per consumed resources (storage and processing). On a cache miss, the
algorithm replaces the least profit cached video with new video if it
has a higher profit value. When an uncached video is requested, then
the algorithm calculates the hit-rate profit for caching that video uti-
lizing the video popularity and probability of getting the video request
in same or lower quality. If the profit of the video is higher than the
least profit cached video, then the algorithm performs the replace-
ment otherwise discard the video after serving the user. The profit for
caching a video is the ratio of number of requests (either for the same
or lower video bit-rate) that can be served by caching the video and
the weighted sum of normalized values of required storage space and
processing power (to transcode the video to lower bit-rate versions to
fulfill the future requests). The algorithm considers two types of profits,
namely, direct and indirect profit when replacing a video. Direct profit

6



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

represents the normalized probability of a video being requested by a
user in the same bit-rate, and indirect profit represents the normalized
probability of video being requested in either the same or lower bit-rate
version. Direct profit is defined as

dv
q =

pvpq

r̂vq

(2)

where r̂vq
is the normalized size of the video v in quality q and pq is the

probability of a user in the cell requesting a video in the quality q. pq
is calculated with the help of RNI API on MEC (ETSI - Radio Network
Information API). MEC measures the throughput of all UEs in a cell
using RNI API, and the highest supported video bit-rate is assessed using
these throughput values. A probability distribution, pq ∶

∑max
q=min

pq =

1, of requested video bit-rates is estimated using throughput data for
all users in a cell, and it depends on the users distribution in the cell,
e.g., if most of the users are at the edge of the cell then probability
of a request begin in lower bit-rate is high. If processing power is not
available for transcoding, then only direct profit is considered for cache
replacement. In indirect profit, processing cost for transcoding a cached
video is also considered along with the storage cost. Indirect profit is
defined as

dv
qq″ =

pv
∑q

i=q″ pi

𝛼r̂vq
+ 𝛽

∑q
i=q″ P̂q→i

(3)

where P̂q→i is normalized processing power, r̂vq
is the normalized size

to cache the video v in quality q, and 𝛼, 𝛽 are weight parameters.

Table 3
Simulation parameters.

Parameter Value

No. of MEC servers 4
UEs per MEC 20 (Uniformly distributed in the cell)
Number of videos 1000
Video bit-rates 0.4 Mbps, 1.2 Mbps, 2.5 Mbps, and 5 Mbps
Video size 50 MB, 80 MB, 100 MB, and 150 MB
Delay between MECs [20, 60] ms
Delay between MECs and Content server [100, 200] ms
Processing power (P) 1
Zipfs’ parameter (𝛼) 0.8
Transmission power 46 dBm
Channel Bandwidth 20 MHz
Operating Frequency (freq) 5.3 GHz
Path loss model (3GPP) 36.7log10(d[m]) + 22.7 + 26log10(freq[GHz])

Fig. 3. Change in hit ratio, delay, and external data on varying the inter request arrival rate (𝜆).

7



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

Algorithm 2 illustrates the procedure of cache replacement algorithm.
On a cache miss, for a user request of video vq, the algorithm checks
if available processing power (P) is greater than minimum processing
power (Pmin) for transcoding (line 6). If the MEC has enough processing
power, then algorithm finds a bit-rate level (q″) up to which MEC can
transcode from requested bit-rate (q) with available processing power
(line 7). Afterward, it calculates the indirect profit (dv

qq″ ) and finds a

cached video (v′q) with the minimum profit value (d
v′q
min). If the profit

for vq is greater than v′q, then it replaces the later with vq (line 10).
If the MEC does not have enough processing power for transcoding
(line 13), then the algorithm calculates the direct profit (dv

q) and com-
pares it with the minimum profit among the cached videos for replace-
ment (line 16). Theorem 4.1 shows that the time complexity of RAVEN
is (⌈ Cj

rmin
⌉). Furthermore, RAVEN attains a 2-approximation ratio for

video caching, which can be established as follows. Each MEC server in
the caching network makes the caching decision locally while sharing
the cache information with other MEC servers. Each video, in a given
bitrate, is associated with a profit value, and MEC servers successively
cache the most profitable videos. Therefore, it is a cooperative caching
algorithm that is local-greedy. Contrary to a central server populating
all the caches, under RAVEN, each MEC server locally takes the caching
decision to maximize the global hit-ratio; hence RAVEN is distributed
in this sense. This sort of local-greedy algorithm ascertained to achieve
a 2-approximation ratio (Borst et al., 2010).

Theorem 4.1. Complexity of RAVEN is (⌈ Cj
rmin

⌉).
Proof. Algorithm 1 executes for every user request. If video is cached
on the MEC server in requested bit-rate, it can be searched in constant

time (1) using hash tables; therefore, the algorithm takes a constant
time  for this step. If video is not cached in requested bit-rate on
the MEC server then after fetching the video Algorithm 2 is executed
for cache replacement. In lines 7, 9, and 15, Algorithm 2 searches for
minimum profit video in the cache, which contributes to its time com-
plexity. In worst case, line 7 carries up to || iterations, and lines 9 and
15 require up to ⌈ Cj

rmin
⌉ iterations where Cj is cache size of MEC server

j and rmin is size of a video in lowest bit-rate. Therefore the worst-case
run time complexity of proposed algorithm is (|| + ⌈ Cj

rmin
⌉) where ||

is the number of available video bit-rates and usually a small number
(i.e., 5). Hence the complexity can be reduced to (⌈ Cj

rmin
⌉).

5. Results and discussions

In simulations, we consider an Urban Macro (UMa) cell model with
four eNBs, each eNB using transmission power of 46 dBm and 20 MHz
of channel bandwidth. Each eNB serves 20 active users that are uni-
formly distributed in a cell of 5 km radius. An MEC server is deployed
at each eNB to offer the caching and processing resources. Video library
 consists of 1000 videos, playtime of each video is 5 min, a video
can be served in any of the available four bit-rate variants (0.4 Mbps,
1.2 Mbps, 2.5 Mbps, and 5 Mbps, for 360p, 480p, 720p, and 1080p
video resolutions, respectively), and size of different bit-rate variants
of a video are 50 MB, 80 MB, 100 MB, and 150 MB. Each user gener-
ates video requests independently following Poisson process with mean
inter request interval of 8 min. The user’s video requests follow the
Zipf’s popularity distribution (Zink et al., 2009) which determines the
probability of next request to be for ith popular video. It is given by Eq.

Fig. 4. Change in hit ratio, delay, and external data with increase in cache size.

8



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

(4) and used to calculate the value of pv.

pi =
i−𝛼∑| |

j=1 j−𝛼
(4)

where 𝛼 = 0.8 is Zipf parameter (Shanmugam et al., 2013) and| | is total number of videos in the library. UMa path loss model with a
non-line-of-site (NLOS) condition as specified in 3GPP TR36.814 V9.2.0
(3GPP) is used to calculate the available Down-Link (DL) throughput of
the users in the cell. Expected video bit-rate of user requests is esti-
mated by utilizing the UEs’ throughput. The probability distribution of
video bit-rates, pq, is measured by employing the expected bit-rate of all
the users in the cell, which is used to calculate the direct and indirect
profit of caching a video. On MEC platform, a service or an applica-
tion can calculate the UEs’ throughput using RNI API over the Mp1
reference point (ETSI - Radio Network Information API). For simplicity,
we consider the stationary users and stable network conditions; users
send requests for the entire videos in specific bit-rates, which is selected
based on available bandwidth. By changing the granularity of users’
requests to video chunks, the proposed method can be used for time-
varying video bit-rates where caching decision are made for each video
chunk instead of the entire video. The end-to-end latency for fetching
the video content is randomly assigned between [5, 15] ms uniformly
for local eNB, [20, 60] ms for neighboring MEC servers, and [100, 200]
ms for origin content server or CDN on the Internet. Cache size repre-
sents the percentage of video library size that can be cached (e.g., 10%
cache size means cache on each MEC server is able to store 10% of
the video library). The processing power of 1 (P = 1) symbolizes the
transcoding capability of an 8-core machine. Values from Table 1 deter-
mines how many parallel transcodings are possible, and what fraction
(one 1080p → 240p transcoding takes 1/14 of the processing power of

an 8-Core machine) of processing power (P) is consumed for a transcod-
ing operation. In Table 3, we define the simulation parameters used for
the evaluation. Following metrics are considered for performance eval-
uation:

∙ Hit ratio - the fraction of requests fulfilled from the cache of the
MEC servers.

∙ Average access delay - average time taken to download initial frag-
ments of the video (sufficient to start the video playback) from any
one of the MEC servers or CDN/content server to the user device.

∙ External traffic load - the amount of data fetched from CDN/content
server to fulfill the user requests.

We compare the RAVEN caching method with the following
approaches:

∙ Optimal - Optimal solution to the caching problem based on the ILP
formulation for the given set of user requests. The solver knows all
future requests to make the caching decision.

∙ CachePro - A caching and transcoding method for cellular RAN (Ped-
ersen et al., 2016). In this work, the authors did not consider the col-
laboration among the MEC servers. Comparison of the results with
this approach demonstrates the great merit of collaboration among
MEC servers.

∙ CoCache - A collaborative caching policy without transcoding. Com-
parison of the results with this method is important to understand
the effect of transcoding in a collaborative caching system.

∙ Joint Collaborative Caching and Processing (JCCP) - In JCCP, the
authors proposed a joint collaborative caching and transcoding
scheme (Tran et al., 2017b). In this work, MEC servers collaborate
with each other to share the resources, and the video cached at one
server can be served to the user who is connected to some other

Fig. 5. Change in (a) hit ratio, (b) delay, and (c) external data with increase in processing power.

9



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

server. But in this work, the authors did not consider the cache con-
solidation and they deploy the simplistic Least Recently Used (LRU)
cache replacement scheme. In contrast to their work, we come up
with cache consolidation and also introduce a RAN aware cache
replacement policy.

∙ Highest-bitrate video caching - In this case, only the highest bit-
rate of the video is cached on the MEC servers, and the request for
lower bit-rate videos are served after transcoding the highest bit-rate
version (Kumar and Vineeth, 2018).

The approaches are compared for different cache sizes, available
processing powers at the MEC servers, and content popularity distribu-
tion. CachePro, CoCache, and JCCP algorithms perform a search oper-
ation in the cache for requested video and use the LRU algorithm for
cache replacement. With an efficient implementation using hash tables,
search operation and LRU algorithm execution can be performed in
constant time ((1)). Therefore CachePro, CoCache, and JCCP have a
constant time complexity ((1)). The proposed RAVEN method also
provides a constant time complexity, which is equivalent to the time
complexity of the stated algorithms.

5.1. Effect of change in request-arrival rate

To determine the scalability of caching only the highest bit-rate
version of videos, we study the performance of the RAVEN method
and highest bit-rate caching on different load conditions. To change
the load, we reduce the inter-request arrival time (𝜆) in the simula-
tion, which determines how often a user is sending the requests. Fig. 3
shows that in highest bit-rate video caching, the performance drops
with the increase in load because it relies solely on the available pro-
cessing power to serve the lower bit-rate users requests. In contrast,

the change in the load does not affect the RAVEN, as it does not solely
rely on the processing power of the MEC server to serve the users. The
RAVEN method also beats the highest bit-rate caching in the lightly
loaded condition (𝜆 = 50). As caching the highest bit-rate video is
not a scalable solution and well outmatched by RAVEN, we exclude the
comparison with it hereafter.

5.2. Effect of change in cache size

Fig. 4(a) shows the change in hit-ratio on the increase in the cache
size at a fixed processing power of 1 and displays that for cache size of
12%, the RAVEN algorithm outperforms the JCCP algorithm by 10%
(for 10% of the cache) and performs close to the optimal solution.
CachePro performs the worst since it does not have any collaboration
among the MEC servers and hence the MEC servers could not fetch the
content cached on other MEC servers. Fig. 4(b) depicts that the delay
reduces with an increase in the cache capacity of MEC servers. For the
cache size of less than 9%, RAVEN takes the minimum time to serve
the users, and for higher cache size JCCP surpasses the RAVEN. JCCP
replicates the content on different MEC servers and large cache size (9%
cache size means that all four MEC servers can collectively cache 36%)
quashes the performance impact of replication, leading to a lesser delay.
On the contrary, RAVEN does not replicate the content to save the stor-
age, and transfers the content from one MEC server to another to serve
the user requests that induce some additional delay. For small cache
size, RAVEN performs better (11.5% less delay for 5% cache size com-
pared to JCCP) than other schemes. Likewise, in Fig. 4(c), downloaded
data from the Internet decreases when the cache size is increased.
RAVEN downloads 60% lesser data at cache size of 10% compared to
JCCP and other schemes. Results indicate that CachePro performs the

Fig. 6. Change in hit ratio, delay, and external data with change in skewness of video popularity distribution.

10



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

worst in all aspects, although it utilizes both processing and caching. On
this basis, it is important to have collaboration among the MEC servers
for efficient cache utilization. CoCache performs better than CachePro
as it enables collaboration among the MEC servers, but it does not use
the processing power for transcoding, thus it’s outperformed by RAVEN
and JCCP. For caching, JCCP practices both transcoding and collab-
oration, but because of content replication, it wastes the storage. In
RAVEN, the cache is consolidated through collaboration, and it exploits
the network information for cache replacement. Therefore, it attains the
best results among the compared schemes in all aspects for small cache
size.

5.3. Effect of change in processing power

Fig. 5(a) shows that the hit-ratio increases with an increase in pro-
cessing power at a fixed cache size (12%). The RAVEN algorithm per-
forms better than the JCCP and increases hit-rate by 8% for processing
power of 1. The results in Fig. 5(b) illustrate the effect of the change
in processing power on delay. The delay decreases with the increase in
processing power. The RAVEN method has 13% more delay compare to
JCCP with 1 processing power. RAVEN does not replicate the content,
it thus achieves a better hit-ratio. For the same reason, it transfers the
content from one MEC server to another to serve the users. Fig. 5(c)
shows that the RAVEN downloads 54% less external data compared
to JCCP on 1.2 processing power. Interestingly, the optimal solution
does not exhibit any significant change with the change in process-
ing power because it converges at around 12% of the cache size and
does not improve any further. Results clearly establish that RAVEN out-
performs JCCP and other schemes and gives a better performance for
smaller cache and processing power. As CoCache does not transcode the

cached videos, its results do not change with the change in processing
power. However, it still performs better than CachePro, which employs
the transcoding but does not have any collaboration among the MEC
servers.

5.4. Effect of change in skewness of video popularity distribution

The proposed RAVEN method uses the video popularity distribution
along with network information for caching decision, with this in mind,
we evaluate it for different shapes of popularity distributions. To change
the shape of underlying popularity distribution, we vary the value of
Zipf parameter a in [0.1 1.0] that is used in video request generation.
For the value of a = 1, video popularity is very skewed and rank one
video gets twice as much request as rank two videos, and a = 0 means
that all the videos will get the same number of requests following a uni-
form distribution. For the comparison, we assign 5% cache storage on
each MEC server and P = 1 processing power. Results in Fig. 6 show
that when the popularity skewness increases, the performance of all the
schemes improves and their performance gap shrinks because most of
the users will request only a few popular videos. Results in Fig. 6(a) dis-
play that the RAVEN algorithm raises the hit-ratio by 20% compared to
other schemes for a = 0.1 and 9% more hit-ratio of maximum skewed
popularity. Fig. 6(b) depicts that RAVEN clearly outperforms the other
schemes for a = 0.1. However, for a = 1.0, JCCP performs close to
RAVEN, because JCCP replicates the popular content on different MEC
servers and RAVEN instead transfers the content from one MEC server
to another without replication. Furthermore, RAVEN saves 33% more
data compared to JCCP for a = 0.1 and 55% for a = 1.0. Results
in Fig. 6 confirm that for different video popularity distributions, the
RAVEN method consistently outperforms the other schemes with a good

Fig. 7. Effect of change in number of videos in library on hit-rate, reduction in delay, and downloaded data.

11



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

Fig. 8. Effect of the use of transcoding on hit-rate, reduction in delay, and downloaded data.

margin and it also attains the best results when video popularity distri-
bution is uniform.

5.5. Effect of change in video library size

Here, we analyze the effect of video library size on the performance
of the RAVEN. For this evaluation, we use Zipf parameter a = 0.8,
a fixed 5% (of 1000 video library) cache size, and processing power
P = 1. Results in Fig. 7 indicate that the performance of different
methods gradually declines on the increase in the number of videos in
the library. For a small number of videos (100), the performance of
different methods is identical, which is reasonable because MEC can
cache a significant part of the small video library. Therefore the pro-
posed method’s efficiency is not advantageous for a substantially small
number of videos. An increase in the number of videos necessitates the
efficient use of available cache storage, and it is evident from the per-
formance difference in the results. RAVEN outperforms all the other
methods for a significantly higher number of videos (400 or higher)
across all the performance metrics.

5.6. Video caching without transcoding

To assess the impact of transcoding and benefits of the caching in
the absence of it, we evaluate the proposed RAVEN and other methods
when MEC does not perform the transcoding. Results in Fig. 8 points
that when transcoding is engaged along with video caching, RAVEN
attains an improvement of ≈ 14% in hit ratio that is at least 4% higher
than the performance gain by other methods. Therefore it is plausi-
ble to say that RAVEN employs computation power more diligently.
Although transcoding has an impact on performance, RAVEN signif-

icantly outperforms the other methods in both cases (with or with-
out using transcoding). Furthermore, RAVEN delivers a competing per-
formance without using the transcoding as compared to the results
achieved by other methods while utilizing the transcoding. CoCache
does not use transcoding in video caching; thus, there is no noticeable
difference in its performance with or without transcoding. Results in
Fig. 8 reports that MNOs can benefit from video caching, even without
using the transcoding, that can serve 70.43% of the users form the net-
work edge and consequently decreases the average delay by 56.6% and
reduces the download data from ISP by 68.5% which can notably cut
the network load and OPEX.

6. Conclusion and future work

In this work, we design a RAN-aware adaptive video caching
(RAVEN) method. RAVEN utilizes the radio network information pro-
vided by RNI API of MEC to select an appropriate bit-rates for video
caching. We formulate the cache problem on MEC as an ILP to maxi-
mize the hit-ratio to serve most of the user requests from the network
edge itself. As the optimization cannot be solved in real time, this work
introduces a profit-based caching method to cache the video content on
MEC servers. It utilizes the video popularity distribution and estimated
video request bit-rates for caching decisions. RAVEN ensures the collab-
oration among the MEC servers, to avoid the replication, that has a pos-
itive impact on the cache performance. Further, RAVEN performs the
transcoding to serve the different bit-rate requests from a cached video.
Simulation results establish that the RAVEN outperforms the state-of-
the-art caching schemes and performs close to the optimal solution as
compare to others.

12



S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

The introduction of Virtual Reality (VR) has brought new applica-
tions and use cases to the horizon. 360◦ video and VR are powerful
techniques that offer the viewers an immersive experience and becom-
ing increasingly popular. Caching a 360◦ video and AR/VR content is
more challenging, compared to a regular video, because they demand
a high bit-rate for streaming and comparatively huge storage space for
caching. In addition, all the transmitted data is not consumed by the
user, hence it presents an interesting problem, and we will explore it in
our future work.

CRediT authorship contribution statement

Shashwat Kumar: Conceptualization, Methodology, Software,
Writing - original draft. Sai Vineeth Doddala: Software. A. Antony
Franklin: Supervision, Writing - review & editing. Jiong Jin: Supervi-
sion, Writing - review & editing.

Declaration of competing interest

The authors whose names are listed immediately below certify that
they have NO affiliations with or involvement in any organization or
entity with any financial interest, or non-financial interest in the subject
matter or materials discussed in this manuscript.

Acknowledgements

This work was supported by the project “Low Latency Network
Architecture and Protocols for 5G Systems and IoT”, SERB, Govt. of
India.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jnca.2020.102737.

References

3GPP, TR36.814 v9.2.0: Evolved Universal Terrestrial Radio Access (E-UTRA); Further
Advancements for E-UTRA Physical Layer Aspects.

Abdullahi, I., Arif, S., Hassan, S., 2015. Survey on caching approaches in Information
centric networking. J. Netw. Comput. Appl. 56, 48–59, https://doi.org/10.1016/j.
jnca.2015.06.011.

Bastug, E., et al., 2014. Living on the edge: the role of proactive caching in 5G wireless
networks. IEEE Commun. Mag. 52 (8), 82–89.

Belshe, M., 2010. More bandwidth doesn’t matter (much). www.belshe.com/2010/05/
24/more-bandwidth-doesnt-matter-much/.

Bilal, K., Baccour, E., Erbad, A., Mohamed, A., Guizani, M., 2019. Collaborative joint
caching and transcoding in mobile edge networks. J. Netw. Comput. Appl. 136,
86–99, https://doi.org/10.1016/j.jnca.2019.02.004.

Borst, S., Gupta, V., Walid, A., 2010. Distributed caching algorithms for content
distribution networks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9.

de Assuno, M.D., da Silva Veith, A., Buyya, R., 2018. Distributed data stream processing
and edge computing: a survey on resource elasticity and future directions. J. Netw.
Comput. Appl. 103, 1–17, https://doi.org/10.1016/j.jnca.2017.12.001.

ETSI, Mobile-Edge Computing - Introductory Technical White Paper.
ETSI, Mobile Edge Computing (MEC); MEC in 5G Networks.
ETSI, Mobile Edge Computing (MEC); Radio Network Information API.
ETSI, Mobile Edge Computing (MEC); Technical Requirements.
FFmpeg, https://www.ffmpeg.org/, (Accessed 5 November 2019).
Forecast, C.V., 2019. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2017-2022.
Gharaibeh, A., et al., 2016. A provably efficient online collaborative caching algorithm

for multicell-coordinated systems. IEEE Trans. Mobile Comput. 15 (8), 1863–1876.

Hu, P., Dhelim, S., Ning, H., Qiu, T., 2017. Survey on fog computing: architecture, key
technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42,
https://doi.org/10.1016/j.jnca.2017.09.002.

Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.,
2009. Networking named content. In: Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies, CoNEXT 09.
ACM, pp. 1–12.

Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.,
2007. A data-oriented (and beyond) network architecture. ACM SIGCOMM Comput.
Commun. Rev. 37 (4), 181–192.

Kumar, S., Vineeth, D.S., 2018. Edge assisted dash video caching mechanism for
multi-access edge computing. In: 2018 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), pp. 1–6.

Kutscher, E.D., Eum, S., et al., July 2016. Information-centric networking (ICN) research
challenges. RFC 7927.

Liu, J., Yang, Q., Simon, G., 2016. Optimal and practical algorithms for implementing
wireless CDN based on base stations. In: 2016 IEEE 83rd Vehicular Technology
Conference (VTC Spring), pp. 1–5.

Mehrabi, A., Siekkinen, M., Yl-Jski, A., 2018. QoE-traffic optimization through
collaborative edge caching in adaptive mobile video streaming. IEEE Access 6,
52261–52276, https://doi.org/10.1109/ACCESS.2018.2870855.

Ostovari, P., Wu, J., Khreishah, A., 2016. Efficient online collaborative caching in
cellular networks with multiple base stations. In: 2016 IEEE 13th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 136–144.

Pedersen, H.A., et al., 2016. Enhancing mobile video capacity and quality using rate
adaptation, RAN caching and processing. IEEE/ACM Trans. Netw. 24 (2), 996–1010.

Shanmugam, K., et al., 2013. Femtocaching: wireless content delivery through
distributed caching helpers. IEEE Trans. Inf. Theor. 59 (12), 8402–8413.

Shen, B., et al., 2004. Caching strategies in transcoding-enabled proxy systems for
streaming media distribution networks. IEEE Trans. Multimed. 6 (2), 375–386.

Tran, T.X., Pompili, D., 2019. Adaptive bitrate video caching and processing in
mobile-edge computing networks. IEEE Trans. Mobile Comput. 18 (9), 1965–1978,
https://doi.org/10.1109/TMC.2018.2871147.

Tran, T.X., Hajisami, A., Pompili, D., 2017a. Cooperative hierarchical caching in 5G
cloud radio access networks. IEEE Netw. 31 (4), 35–41.

Tran, T.X., Pandey, P., Hajisami, A., Pompili, D., 2017b. Collaborative multi-bitrate
video caching and processing in mobile-edge computing networks. In: 2017 13th
Annual Conference on Wireless On-demand Network Systems and Services (WONS),
pp. 165–172.

Wang, X., et al., 2014. Cache in the air: exploiting content caching and delivery
techniques for 5G systems. IEEE Commun. Mag. 52 (2), 131–139.

Zhang, K., Leng, S., He, Y., Maharjan, S., Zhang, Y., 2018. Cooperative content caching
in 5g networks with mobile edge computing. IEEE Wirel. Commun. 25 (3), 80–87,
https://doi.org/10.1109/MWC.2018.1700303.

Zink, M., Suh, K., Gu, Y., Kurose, J., 2009. Characteristics of YouTube network traffic at
a campus network measurements, models, and implications. Comput. Network. 53
(4), 501–514.

Shashwat Kumar received his B.Tech. degree in Information
Technology from Uttar Pradesh Technical University, India,
in 2011 and the M.Tech. degree in Computer Science and
Engineering from the Sardar Vallabhbhai National Institute
of Technology, Surat, India, in 2013. He is currently work-
ing toward his PhD degree in Computer Science and Engineer-
ing at the Indian Institute of Technology Hyderabad (IITH),
India. His research interests include Multi-access Edge Com-
puting (MEC), Video Caching, 360-degree Video Streaming,
and Mobile Networks.

Sai Vineeth Doddala working in Samsung R&D Institute Ban-
galore as Senior Engineer in Wi-Fi & IOT team. He completed
his B.Tech in the Department of Computer Science and Engi-
neering from the Indian Institute of Technology Hyderabad,
India. His research interests include Wireless Networks and
Mobile Edge Computing.

13

https://doi.org/10.1016/j.jnca.2020.102737
https://doi.org/10.1016/j.jnca.2020.102737
https://doi.org/10.1016/j.jnca.2015.06.011
https://doi.org/10.1016/j.jnca.2015.06.011
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref3
www.belshe.com/2010/05/24/more-bandwidth-doesnt-matter-much/
www.belshe.com/2010/05/24/more-bandwidth-doesnt-matter-much/
https://doi.org/10.1016/j.jnca.2019.02.004
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref6
https://doi.org/10.1016/j.jnca.2017.12.001
https://www.ffmpeg.org/
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref13
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref14
https://doi.org/10.1016/j.jnca.2017.09.002
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref16
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref17
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref18
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref19
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref20
https://doi.org/10.1109/ACCESS.2018.2870855
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref22
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref23
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref24
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref25
https://doi.org/10.1109/TMC.2018.2871147
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref27
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref28
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref29
https://doi.org/10.1109/MWC.2018.1700303
http://refhub.elsevier.com/S1084-8045(20)30211-3/sref31


S. Kumar et al. Journal of Network and Computer Applications 168 (2020) 102737

Dr. Antony Franklin A received his B.E. degree in Electron-
ics and Communication Engineering from Madurai Kamaraj
University, India, in 2000 and M.E. degree in Computer Sci-
ence and Engineering from Anna University, India, in 2002.
He received his Ph.D. degree in Computer Science and Engi-
neering from the Indian Institute of Technology Madras, India,
in 2010. He is currently working as an Associate Professor at
Indian Institute of Technology Hyderabad (IITH), India. Before
joining IITH, he worked as a Senior Engineer at DMC R&D
Center, Samsung Electronics, South Korea between 2012 and
2015 where he was involved in the development of 5G net-
working technologies. He also worked as a Research Engi-
neer in Electronics and Telecommunications Research Insti-
tute (ETRI), South Korea between 2010 and 2012 where he
was involved in Cognitive Radio Technology research. His cur-
rent research interests include Mobile Networks, Cloud Radio
Access Networks (C-RAN), Mobile Edge Computing (MEC),
Internet of Things (IoT), SDN/NFV. He has published over 50
articles in refereed international journals and conferences. He

is a senior member of IEEE and a member of ACM.

Jiong Jin (IEEE M’11) received the B.E. degree with First
Class Honours in Computer Engineering from Nanyang Tech-
nological University, Singapore, in 2006, and the Ph.D. degree
in Electrical and Electronic Engineering from the University
of Melbourne, Australia, in 2011. He is currently a Senior
Lecturer in the School of Software and Electrical Engineer-
ing, Faculty of Science, Engineering and Technology, Swin-
burne University of Technology, Melbourne, Australia. Prior
to it, he was a Research Fellow in the Department of Elec-
trical and Electronic Engineering at the University of Mel-
bourne from 2011 to 2013. His research interests include net-
work design and optimization, edge computing and distributed
systems, robotics and automation, and cyber-physical systems
and Internet of Things as well as their applications in smart
manufacturing, smart transportation and smart cities.

14


	RAN-aware adaptive video caching in multi-access edge computing networks
	1. Introduction
	2. Related work
	3. Motivation, system architecture, and problem formulation
	3.1. Motivation
	3.2. System architecture
	3.3. Problem formulation

	4. RAN-aware adaptive VidEo cachiNg (RAVEN)
	5. Results and discussions
	5.1. Effect of change in request-arrival rate
	5.2. Effect of change in cache size
	5.3. Effect of change in processing power
	5.4. Effect of change in skewness of video popularity distribution
	5.5. Effect of change in video library size
	5.6. Video caching without transcoding

	6. Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


