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Abstract—In the Next Generation Radio Access Network (NG-
RAN) defined by 3GPP for the fifth generation of mobile
communications (5G), the next generation NodeB (gNB) is split
into a Radio Unit (RU), a Distributed Unit (DU), and a Central
Unit (CU). RU, DU, and CU are connected through the fronthaul
(RU-DU) and midhaul (DU-CU) segments. If the RAN is also
virtualised RAN (VRAN), DU and CU are deployed in virtual
machines or containers. Different latency and jitter requirements
are demanded on the midhaul according to the distribution of
the protocol functions between DU and CU.

This study shows that, in VRAN, the virtualisation technolo-
gies, the functional split option, and the number of elements
deployed in the same computational resource affect the latency
budget available for the midhaul. Moreover, it provides an
expression for the midhaul allowable latency as a function of the
aforementioned parameters. Finally, it shows that, the virtualised
DUs featuring a lower layer split option shall be deployed not
in the same computational resources where other vDUs are
deployed.

Index Terms—S5G, functional split, fronthaul, midhaul, virtu-
alisation.

I. INTRODUCTION

In the Next Generation Radio Access Network (NG-RAN),
the next generation NodeB (gNB) protocol stack is divided
(i.e., it is functionally split) among the following network
components [1] I: (i) the Central Unit (CU), where, the eNB
protocol stack upper layers (e.g. Packet Data Convergence
Protocol — PDCP, Radio Resource Control — RRC) are
hosted; (ii) the Distributed Unit (DU), where, the lower layers
(e.g. Physical — PHY, Medium Access Control — MAC,
Radio Link Control — RLC) are hosted, and (iii) the Radio
Unit (RU) where the Radio Frequency (RF) functionalities
reside. RU and DU communicate using a fronthaul interface
(also called fronthaul I) while DU and CU communicate
through a midhaul interface (also called fronthaul II). Several
functional split options have been planned by 3GPP technical
report TR 38.801 [2]. Each functional split option has got
specific requirements in terms of data rate and latency [3].
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Among the considered fronthaul interfaces, the Next Gen-
eration Fronthaul Interface (NGFI) [4] and the new Common
Public Radio Interface (CPRI) specification for 5G called
eCPRI [5] are the most mature ones. Moreover, the future
5G network architecture is expected to be massively based
on Network Functions Virtualisation (NFV) [6]. The virtu-
alisation of NG-RAN components (i.e., CU and DU) allows
to move toward a Virtualised RAN (VRAN) and achieve the
full potential of cost saving with rapid deployment of new
services [7]. Because of the additional hypervisor layer (the
fundamental building block of virtualisation [8]), the midhaul
segment requirements in terms of latency and jitter, reported
in 3GPP TR 38.801, may change and become more stringent.

So far, several works studied the impact of virtualisation
on physical infrastructure sharing, isolation, cost, and energy
saving of Long Term Evolution (LTE) networks [9]. However,
the estimation of the effect of virtualising the NG-RAN com-
ponents on the fronthaul/midhaul latency budget (i.e., the max-
imum allowable latency) has not been conducted in details yet.
In [10] and [11], an evaluation of how different virtualisation
technologies (i.e., VirtualBox, Kernel-based Virtual Machine,
and Docker Container) decrease the midhaul latency budget
considering CU virtualisation and Option 7-1 functional split
is performed.

The current study stems from [10] and [11] but it evaluates
many additional scenarios. In particular, several virtualisation
technologies are utilised to virtualise not only the CU but also
the DU. Both split Option 8 and Option 7-1 are considered.
The midhaul latency budget and packet jitter (i.e., packet delay
variation) budget are computed in all the possible combina-
tions and compared with the scenario when CU and DU are
deployed in bare metal. A mathematical model, expressing
the midhaul latency budget as a function of the considered
channel bandwidth, functional split options, and virtualisation
technologies is provided and validated through experimental
results. In an additional experimental analysis, how a vDU
performance is impacted by virtualised elements (i.e., CU and
DU) deployed in the same computational resource is studied.
In this way, the need for anti-affinity constraint when a vDU is
deployed is evaluated. Finally, the impact of deploying several
vDUs/vCUs in the same host (i.e., the VRAN scalability) is
experimentally evaluated.
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Fig. 1: Functional Split Options.
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Fig. 2: Experimental Setup I.

II. PERFORMANCE EVALUATION PARAMETERS AND
EVALUATION SCENARIOS

The experimental analysis is carried out in the 5G seg-
ment of the Advanced Research on Networking (ARNO-5G)
testbed [12]. The ARNO-5G testbed supports the emulation of
the behavior of a 5G network and allows to perform specific
measurements to calculate latency and jitter. OpenAirInterface
(OAI) is utilized as a mobile network platform. The RU
consists of an Ettus B210 Universal Software Radio Peripheral
(USRP) while the UE consists of a Huawei E3372 dongle
connected to a PC. The core network is implemented by
means of openair-cn, which is an implementation based on
3GPP specifications of the Evolved Packet Core (EPC). OAI
provides a C-RAN implementation of the IF5 functional split
(equivalent to the split Option 8) and IF4p5 functional split
(equivalent to the split Option 7-1). Both functional splits are
Physical layer functional splits, as depicted in Fig. 1. For both
the considered split options the midhaul latency requirement
is about 250us one way, as specified in 3GPP TR 38.801.

The considered performance evaluation parameters are the
Allowable Latency Budget (ALB) and the Allowable Jitter
Budget (AJB) of the midhaul segmentz. The ALB and the
AJB are defined as the maximum one-way latency and the
maximum latency variation (i.e., delay jitter) supported by
the midhaul segment without disconnection. A disconnection
occurs when the latency and the jitter of the midhaul segment
cause loss of synchronization between CU and DU. To emulate
latency and jitter in the midhaul, the Linux traffic control (tc)
tool is utilized. The tc utility is based on a token bucket filter
and it is able to artificially add latency and jitter to a packet by
caching it in the output interface before sending it on the link.
Delays dO and dl are set to the midhaul Ethernet interfaces
between DU and CU respectively.

In all the analyses presented in this work and described
here below, the scenarios summarized in Tab. I are considered.

Three virtualisation technologies are considered: Docker-
Container, Kernel-based Virtual Machine (KVM), and Virtu-
alBox (VB). We used general purpose PCs with Linux-based

2The contribution of the fronthaul to the overall latency is assumed to be
negligible because the RU is not virtualised and the link between RU and DU
is assumed to be short.

TABLE I: Experimental Scenarios

. Virtualisation Technologies
Scenarios Bare Metal (Docker, KVM, VB)
Scenario 1 (S1) | DU and CU X
Scenario 2 (S2) DU vCU
Scenario 3 (S3) CU vDU
Scenario 4 (S4) X vDU and vCU
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Fig. 3: Experimental Setup II.

operating system. In all the scenarios two channel bandwidths
i.e., 5 MHz and 10 MHz are considered.

In the first experimental analysis, ALB and AJB are mea-
sured by exploiting the ARNO-5G testbed configuration shown
in Fig. 2. The EPC is deployed in PC1. The CU is deployed in
PC3 either in bare metal (i.e., CU) or virtualised (i.e., vCU),
and one UE is considered. Similarly, the DU is deployed in
bare metal or virtualised in PC5. The selected combination
depends on which of the four aforementioned scenarios and
summarized in Tab. I, is considered. Based on the considered
virtualisation technology, the vCU and the vDU are installed
in a Docker Container or virtual machine (VM). The ALB of
the midhaul segment is then obtained by increasing d0 and
dl delays until a disconnection event occurs. To evaluate the
AJB, a fixed mean latency (i.e., a percentage of the ALB) and
a supplementary random delay based on a normal distribu-
tion whose standard deviation is progressively increased are
applied to the midhaul Ethernet interfaces of the DU and CU.
The following two cases are examined. In the first case, the
mean latency is set to 95% of the ALB and the supplementary
random delay is increased to discern if jitter could be the origin
of an ALB reduction. In the second case, the mean latency is
set to 42.5% of the ALB and the supplementary random delay
is increased to discern if jitter could be the limitation for the
midhaul segment.

The second experimental analysis aims at understanding if
an anti-affinity constraint is necessary when multiple virtu-
alised mobile functions with different functional split options
are deployed in the same host. The anti-affinity constraint
forces Virtualised Network Functions (VNFs) to be deployed
in different computational resources. To perform such analysis,
a more complex network is deployed by doubling the involved
NG-RAN components as shown in Fig. 3. An EPC, two CUs,
two DUs, two RUs, and two UEs are deployed. The EPC is
deployed in PCI1. Either two bare metal processes of the CU
or two vCUs are deployed in PC3. Similarly, either two bare
metal processes of the DU or two vDUs are deployed in PCS5.
The vCUs and the vDUs are installed in a Docker Container
or VM according to the considered virtualisation technology.
The bare metal processes or the virtualised components are
activated according to scenarios summarized in Tab. I. In such
analysis, three cases are examined. In the first case, only the
Option 7-1 functional split is implemented. In the second case,
the Option 7-1 functional split is implemented between a CU-
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Fig. 5: ALB results for Experimental Setup I.

DU pair and the Option 8 functional split is implemented
between the second CU-DU pair. In the third case, only the
Option 8 functional split is considered.

In the third analysis, the scalability of the system is verified
by increasing the deployed NG-RAN components up to four
as shown in Fig. 4. The experiment is conducted as in the first
considered experiment.

III. EXPERIMENTAL RESULTS

Fig. 5 depicts the obtained ALB in the first experimental
setup. The ALB obtained in S1 (i.e., the bare metal scenario)
is considered as benchmark. As shown, the utilization of the
Docker Container allows to reach the highest allowable latency
budget in all the considered scenarios with virtualised elements
because dockers are a lightweight virtualisation technology.
Indeed, Docker Containers are a native application with respect
to the host. Thus, they have a smaller footprint than the VMs
implemented by means of KVM and VB. Furthermore, in
KVM and VB, I/O virtualisation is performed by means of a
hardware emulation layer under the control of the hypervisor,
introducing additional delay. In addition, ALB heavily depends
on the channel bandwidth: wider channel bandwidths mean
a larger number of Physical Resource Blocks (PRBs), thus
a high computing effort and a growing processing time are
needed. In S2, if KVM is utilised, the ALB is zero when
Option 8 is considered. Instead, with VB the UE is able
to connect only when Option 7-1 and a 5 MHz channel
bandwidth is used. In S3 and S4, ALB values are greater than
zero with Docker Container only.

From the results reported in Fig. 5, it is possible to obtain
an empirical formula that relates the ALB to the considered
channel bandwidth, the functional split options, and the uti-
lized virtualisation technologies. Based on [13] and [14], the
ALB can be expressed as:

ALB =TGP = Tproc, (1)

where T2$PP is the midhaul latency threshold [2] and the
Tproc is the sum of processing time at the DU and the CU.
Based on the experimental results 7). can be linearly fitted
as Tproc = @x+f where x is the considered channel bandwidth

TABLE II: « and B coefficients

Platform Option 7-1 Option 8
a B a B
BM 216 | 276 | -22.8 | 263
Docker -12.6 | 301 | -244 | 266
KVM -13 247 X X

and o and S are coefficients depending on the virtualisation
technology and split option. Tab. II shows the o and 8 values
estimated in the ALB experimental analysis performed by
using the testbed shown in Fig. 2. Fig. 6 (top) shows the
ALB trend in S1. The results depicted in Fig. 6 (middle) and
Fig. 6 (bottom) are obtained in S2 with Docker Container and
KVM, respectively. Note that only the Docker Container and
KVM coefficients are calculated in S2 because the ALB values
obtained when VB is used are too small to obtain a good
fitting. As shown in Fig. 6, if split Option 7-1 is considered,
Docker Container and KVM perform similarly as a function of
the channel bandwidth (their a values are similar). As well,
if split Option 8 is considered, BM and Docker Container
perform similarly as a function of the channel bandwidth.
These results confirm the capabilities of the Docker Container
to achieve performance close to the ones of bare metal when
the CU is virtualised.

e ‘ :
& 200 ‘—\.\?77777””****‘Q‘Aff——fff,,,,, st ]
S1s0F = — ]
Sk T ]
o 58 C i | R | 1
5 14 3 5 10 15 20
@ 300 F—7— ; w w
Z 339 — S2 - Docker ]
e —
S 150 = ]
FI00F T ]
S S0t ; 1
0 L L o L
2,14 3 5 10 15 20
8 3007 T : w ‘
§ %§§ ——— s2-kvM ]
< 100 | , o ]
58 C I i I L .
14 3 20

10
Channel Bandwidth [MHz]
OOption 7-1 (Exper.) ©Option 8 (Exper.) ®Option 7-1 (Analyt.) ® Option 8 (Analyt.)

Fig. 6: ALB trends as a function of channel bandwidth.

Fig. 7 shows the AJB when the fixed mean latency is set
equal to 95% of the ALB. The AJB values obtained in S1 are
considered as benchmark. Fig. 8 shows the obtained results
when the fixed mean latency is set equal to the 42.5% of
the ALB. The results show that in the former case even a
small jitter can cause a disconnection between the CU and DU.
In the latter case, higher AJB is allowed. In both considered
cases the AJB is in the interval between 20us and 40us. Thus
the midhaul is very sensitive to jitter. In all the considered
scenarios for split Option 8, AJB is zero. In S2 with VB,
the UE is able to connect considering Option 7-1 and 5
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Fig. 7: AJB results when mean latency is the 95% of ALB.
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Fig. 9: ALB results in the anti-affinity constraint analysis

MHz channel bandwidth only. In S3 and S4, AJB values are
obtained with Docker Container and Option 7-1 split only.

Fig. 9 shows the results obtained in the second experimental
setup (i.e., anti-affinity experimental analysis). The obtained
results show that, in the case of 5 MHz channel bandwidth, if
split Option 8 and Option 7-1 coexist in the same computa-
tional resource (labelled as Mixed), the ALB decreases with
respect when only Option 7-1 is considered (note that in this
case the ALB is the time of the first UE disconnection, that
is the disconnection of the UE whose data plane utilizes split
Option 8). In case of the 10 MHz channel bandwidth, in the
considered setup, split Option 8 and split Option 7-1 cannot
be deployed together (the achieved ALB is zero). In addition,
it is not possible to deploy two split Option 8 with 10 MHz
channel bandwidth in the same computational resource. Thus,
anti-affinity constraint shall be imposed if VNFs featuring split
Option 8 are deployed to avoid that split Option 8 ALB is
heavily impaired. For KVM and VB technologies UEs and
DUs are not capable to communicate.

Fig. 10 shows the third experimental setup results (i.e., the
scalability experimental analysis). Since the Docker Container
resulted the best one among the analyzed virtualisation tech-
nologies, the scalability experimental analysis is performed
only with Docker Container. Results show that, the ALB
decreases if the number of virtualised DU-CU components
increases due to the greater traffic load injected in the midhaul
segment.

IV. CONCLUSION

In this work an experimental analysis of the effect of
virtualising NG-RAN components (e.g., CU and DU) on the
maximum latency and jitter that the midhaul can support has
been performed. The first set of results showed that by using
heavier virtualisation technologies and a higher number of
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Fig. 10: ALB results in the scalability analysis.
physical resource blocks (i.e., channel bandwidth), the midhaul
maximum latency decreases due to a heavier elaboration
requested to the hardware. An empirical equation expressing
the midhaul maximum latency as a linear function of the
number of physical resource blocks (i.e., channel bandwidth),
functional splits, and virtualisation technologies confirm the
aforementioned trends. Moreover, even the midhaul jitter can
be critical if it reaches values above 40us. A second set of
results showed that if virtual DUs and CUs featuring split
Option 8 are deployed, the utilization of the anti-affinity
constraint is advisable to avoid large impairment in terms of
maximum supported latency. A third set of results showed that
by increasing the number of NG-RAN components in the same
computational resource the maximum midhaul latency heavily
decreases.
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