
DAVIS: A Delay-Aware VNF Selection Algorithm
for Service Function Chaining

Gaurav Garg
Department of CSE
IIT Hyderabad, India

cs16mtech11022@iith.ac.in

Venkatarami Reddy
Department of CSE
IIT Hyderabad, India

cs17resch01007@iith.ac.in

Antony Franklin A
Department of CSE
IIT Hyderabad, India

antony.franklin@iith.ac.in

Bheemarjuna Reddy Tamma
Department of CSE
IIT Hyderabad, India

tbr@iith.ac.in

Abstract—The mobile network operators are moving towards
Virtual Network Functions (VNFs), in place of traditional ded-
icated hardwares for the 5G deployment. The VNFs require
low maintenance and give high flexibility compared to dedicated
hardwares which are prone to failures. Typically, VNFs are run
on top of Virtual Machines (VMs) which run on physical nodes
in data centers. For each class of service, based on its policy, the
traffic has to pass through a set of VNFs in sequence termed
as Service Function Chains (SFCs). Selection of available VNFs
to steer the SFC requests with guaranteed end-to-end latency
is still an open problem. In this work, we design an algorithm
named DAVIS (Delay-Aware VNF selectIon algorithm for SFC)
to increase the SFC acceptance rate by efficiently selecting VNFs.
Simulation results show that DAVIS improves the throughput of
accepted requests by 42% while guaranteeing SLA requirements.

Index Terms—Network Function Virtualization, Service Func-
tion Chain, Processing Latency, CPU Utilization.

I. INTRODUCTION & MOTIVATION

Service Function Chaining (SFC) is an ordered set of
Network Functions (NFs) which guides traffic through them
to provide different end-to-end services. In traditional net-
works, each NF is built on dedicated hardwares which are
deployed and maintained manually at fixed locations based
on requirements. Due to the rapid explosion of mobile and
IoT devices, the amount of traffic generated from users is
increasing significantly [1]. To handle such a massive increase
in the user traffic, network operators need to install more
dedicated hardwares. However, this approach is not efficient,
concerning the installation time and cost. With the emergence
of technologies such as Network Functions Virtualization
(NFV) and Software Defined Networking (SDN), it is possible
to dynamically create virtualized instances of NFs (i.e., Virtual
Network Functions (VNFs)). These VNFs, in turn, intercon-
nect to form SFCs which efficiently utilize the resources,
thereby lowering the OPEX (OPerational EXpenditures) and
CAPEX (CAPital EXpenditures) [2]. For instance, if a service
deployed by an operator requires traffic to pass through the
firewall, load balancer, and then WAN acceleration, an SFC
will be formed if and only if the flow of traffic happens in
such a manner [3].
Based on the type of services and its policies, orchestrator
needs to select the required VNFs and steers traffic through
it. In order to meet the traffic demands of different services,

��� ��� ��� ��� ��� ���

�����������

���

���

���

���

���

���

���

���

���

���

�
�
�
��
�
��
�

Figure 1: CPU Utilization vs VNF Delay.

an operator can deploy multiple instances of the same VNF
type at different locations in a large-scale telecom network.
To improve resource utilization and SFC acceptance rate, an
operator can also select the same VNF instance for multiple
services. An efficient selection of VNFs to form SFCs by
considering both link and processing delays while meeting the
end-to-end delay with less service interruption in its lifetime
is an important aspect to be addressed.

Numerous studies on VNF selection to form SFC considers
link delays and/or throughput of the VNFs [4] [5]. In [6], the
authors showed the relationship between resource allocated
to VNF instance and its expected latency. However, all these
works do fail to consider processing delay of VNFs which
changes with the CPU utilization.

As the number of accepted SFC requests increases, CPU
utilization of the VNF increases and SLAs may get violated.
This may lead to frequent service remappings, which can be
severe for some critical applications. Hence in our work, we
consider the dependency of VNF delay on CPU utilization,
which avoids the service interruption and increases the SFC
acceptance rate. The novelty of our work lies in considering
the relationship between VNF delay and CPU utilization. In
this way, we ensure delay-awareness to create SFC. The graph
in Fig. 1 shows the relationship between processing latency
of the VNF and CPU utilization. These characteristics change
with every VNF. Therefore, the processing latencies at various
utilizations end up differently for a firewall, a Load Balancer,
and a proxy server [7].
The example given in Fig. 2 illustrates our motivation. SFC

Service Function Chaining
(SFC)

DestinationSource

2 ms

[85% ,3ms] [70% ,2ms]

[25% ,1ms][35% ,1ms]

(a) Network Topology.

S B
SFC

(11 ms,30 Mbps) D

(b) SFC Request.

chosen SFP

B2

(c) Shortest Path Algorithm.
chosen SFP

(d) Proposed DAVIS Algorithm .

Figure 2: Working Example for SPA and DAVIS.

considered in this example needs to be processed by VNF A
and VNF B in order to meet the end-to-end latency of 11 ms
with the required bandwidth of 30 Mbps. In the network, two
instances of VNF A and VNF B are deployed at different
nodes. The available throughput of each VNF is given at each
node. The transmission delay between VNFs is given at link
and the format [u%, d] at the node tells the processing delay
d at the CPU utilization at u% for that VNF. For example,
A1 [85%, 3 ms] tells that processing delay of A1, which is
running at 85%, is 3 ms. Fig. 1(c) shows the Service Function
Path (SFP) selected by using the shortest path SFC steering
scheme, which prefers to choose the path with minimum
end-to-end latency without considering processing delay of
VNFs. We call this base scheme as the SPA (Shortest Path
Algorithm) scheme, which chooses the path S → A1 → B1
→ D with the end-to-end latency of 12 ms which exceeds the
tolerable latency and hence the request will be rejected. The
proposed approach DAVIS (explained in Section II) considers
the processing delay also, chooses the path S → A2 → B2 →
D with the end-to-end latency of 11 ms and the request will
be accepted.
The objective of this work is to provide an efficient approach

for selecting VNFs while maximizing the SFC acceptance rate
and the throughput of accepted requests leading to an increase

4

8

12

1

5
9

13

2

6

10

3 7

11

1 ms

2 ms

3 ms

3 ms

3 ms
3 ms2 ms

2 ms

7
ms

8 ms

8 ms

2 ms

4 ms

5 ms

5 ms

6 ms

6 ms

6 ms

4 ms

6 ms

[60%, 1 ms]

[60%, 1 ms]

[60%, 1 ms]

[60%, 1 ms]

[60%, 1 ms]

[60%, 1 ms]

[75%, 2 ms]

2 ms

[75%, 2 ms]

[75%, 2 ms]
[75%, 2 ms]

[90%, 3 ms]

[90%, 3 ms]

[90%, 3 ms]

[90%, 3 ms]

VNF 1

VNF 2

VNF 3

VNF 4

Figure 3: NSFNET Topology.

in provider’s revenue.

II. ALGORITHM DESIGN

An instance of each type of VNF is assigned a static
CPU utilization threshold. For the assigned threshold of VNF,
the processing delay can be known from Fig. 1. [u%, t] in
Fig. 3 means that when the VNF’s CPU utilization threshold
is set to u%, the maximum processing latency offered will be
t ms. Based on the significant change in delay based on CPU
utilization, instances have been assigned a certain threshold.
By setting the CPU utilization threshold, we guarantee that
the VNF will not accept any more SFC requests if the current
utilization is equal to the threshold. By doing this, we assure
that all the SFC requests passing through this VNF will
never have processing latency more than t ms. For example,
[60%, 1 ms] for node1 means that node1 stops accepting
any requests after the utilization of the CPU reaches 60%,
therefore, VNF delay of node1 will not exceed 1 ms at any

Algorithm 1 DAVIS Algorithm
Input SFC request R, Graph G(V,E)
Output Path P for each request r ∈ R

1: Set Th = 0
2: For each request r ∈ R
3: L = length of r
4: Convert G into an L-stage graph
5: {f1, f2,, fL} ← set of ordered VNFs in r
6: f0 ← source, fL+1 ← destination
7: total delay(fL+1) = min

fL∈all nodes at level L
(

processing delay((fL)) + link delay((fL+1),(fL))
+ total delay(fL))

8: lat ← total delay(fL+1)
9: if lat ≤ tolerable latency

10: Accept the request
11: Th ← Th + bandwidth
12: Update the resources in the path
13: else
14: Reject the request

��� ��� ��� ��� ���

����������������������������

�

��

��

��

��

���

���

�
��
�
�
��
�
��
�
�
�
�
��
�
��
�
��

��
�
�
�
�
��
�

���

�����

(a) Accepted Number of SFC Requests.

��� ��� ��� ��� ���

����������������������������

�

���

����

����

����

����

����

����

����

�
��
�
��
��
�
��
�
��
�
�
�
�
�
��
��

�
�
��

���

�����

(b) Effective Throughput.
Figure 4: Simulation Results.

point of time.
Algorithm 1 gives an overview of the proposed algorithm
DAVIS (Delay-Aware VNF selectIon algorithm for SFC)
which considers the relationship between VNF delay and CPU
utilization, along with link delays while choosing SFPs.

The input to the algorithm is the SFC request set and
the graph which contains the nodes and edges which satisfy
the requested VNF throughput and link bandwidth. To find
the path with minimum end-to-end delay from source to
destination, the graph is represented as a multistage graph
and solved by using the dynamic programming approach. We
compute the total link delay between 2 nodes of different
stages using Dijkstra’s algorithm. In line 1, we set Th to
be 0. Th is the sum of bandwidths of all accepted requests.
For each SFC request, we compute the shortest path from
source to destination, such that each VNF and each link on the
path satisfy the bandwidth requirement (line 7). The request
is accepted if the latency is less than or equal to the tolerable
latency of the service. Throughput and resources on the path
P are then updated (lines 11-12).

III. PERFORMANCE EVALUATION

A. Simulation setup

Table I: Simulation Parameters.

Link bandwidth 1700 Mbps
Node bandwidth 1500 Mbps

Length of SFC requests 1 - 4 [uniformly distributed]
SFC bandwidth 10 - 50 Mbps [uniformly distributed]

End-to-end Latency 15 - 25 ms [uniformly distributed]

We test the algorithms on a telecom network topology,
NSFNET topology (14 nodes and 21 links) as shown in Fig. 3.
The delays between the links and the processing delays for the
VNFs have been specified in the figure itself. We assume that
there are 4 types of VNFs spanned across the 14 nodes of the
network. Each node can run only 1 type of VNF. Simulation
parameters considered are shown in Table I. The values of
some parameters are uniformly distributed in a specific range

as mentioned. The length of an SFC request is uniformly
distributed and each SFC request can traverse at most 4 VNFs.

To evaluate the proposed approach, we consider the number
of accepted SFC requests and effective throughput as the
performance metrics. We compare these metrics by running
the base scheme SPA and the proposed approach DAVIS.

B. Simulation Results

1) Accepted number of SFC requests: Fig. 4(a) shows
the comparison of the accepted number of SFC requests for
both the algorithms. We can clearly see that the proposed
approach DAVIS performs better than the base scheme SPA.
It is because DAVIS considers processing delay also while
choosing SFP. So, it selects the VNF such that even if the
utilization of the VNF reaches maximum (up to threshold), the
SFC does not violate its SLA. The proposed algorithm DAVIS
accepts 41% of more SFC requests than the base scheme SPA.

2) Effective throughput: Effective throughput is the sum of
throughput of all the accepted requests. Fig. 4(b) shows the
comparison of effective throughput for both the algorithms.
Similar to accepted number of SFC requests, effective through-
put of accepted requests is higher in the proposed algorithm
even for larger number of SFCs. The proposed algorithm
DAVIS improves the throughput of accepted requests by 42%.
Thus, the proposed algorithm DAVIS outperforms the SPA
scheme.

IV. CONCLUSION AND FUTURE WORK

In this poster, we propose an effective VNF selection
algorithm DAVIS to deploy SFCs by considering dependency
between processing delay and the CPU utilization along with
link delay. Results show that the proposed approach DAVIS
performs better than the base SPA in terms of accepted number
of SFC requests and effective throughput by upto 41% and
42% respectively.
In the future, we plan to work on calculating the processing
latency for different CPU utilization for custom VNFs and
evaluating the proposed approach DAVIS for custom VNFs.

V. ACKNOWLEDGEMENTS

This work was supported by the research project “Low
Latency Network Architecture and Protocols for 5G Systems
and IoT” funded by Science and Engineering Research Board
(SERB), Government of India.

REFERENCES

[1] Cisco, ”Cisco Visual Networking Index: Forecast and Trends,
2017–2022.” Cisco White Paper, November 2018.

[2] E. Halpern, J. and E. C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, DOI 10.17487/RFC7665, October 2015.

[3] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
”SIMPLE-fying Middlebox Policy Enforcement using SDN,” in Proc.
of ACM SIGCOMM, pp. 27–38, August 2013.

[4] C. Ghribi, M. Mechtri, D. Zeghlache, ”A Dynamic Programming Al-
gorithm for Joint VNF Placement and Chaining,” in Proc. of ACM
Workshop Cloud-Assisted Networking, pp. 19-24, December 2016.

[5] S. Jiao, X. Zhang, S. Yu, X. Song and Z. Xu, ”Joint Virtual Network
Function Selection and Traffic Steering in Telecom Networks,” in Proc.
of IEEE GLOBECOM, pp. 1-7, December 2017.

[6] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-
aware VNF Placement and Chaining based on a Flexible Resource
Allocation Approach,” in Proc. of 13th International Conference on
Network and Service Management (CNSM), IEEE, pp. 1–7, November
2017.

[7] F. C. Chua, J. Ward, Y. Zhang, P. Sharma, and B. A. Huberman,
“Stringer: Balancing Latency and Resource Usage in Service Function
Chain Provisioning,” in IEEE Internet Computing, pp. 22-31, November
- December 2016.

