Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

Srikant Manas Kala, Pavan Kumar Reddy, Ranadheer M, Bheemarjuna Reddy Tamma

CSE Department, Indian Institute Of Technology, Hyderabad

ICACCI 2015

(日) (권) (분) (분) (분)

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
000					

- Impact of RCI on WMNs
- **3** RCA CAs
- 4 RCA OIS CA
- 5 RCA EIZM CA

Introduction ●○○	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA 00000	Conclusions
WMN M	lodel Considere	d			

- A single Gateway WMN.
- Mesh-routers and mesh-clients.
- Multi-Radio Multi-Channel (MRMC) Deployment.
- Only inter mesh-router communication issues considered.

Figure: A Simplistic WMN Architecture

Interference Degree

• The Interference Degree of a link (i, j), is the total number of links in WMN which are the conflict links of (i, j).

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA 00000	Conclusions
Concepts	s and Termino	logy II			

Multi Radio Multi Channel Conflict Graph (MMCG)

- Conflict Graph for MRMC WMNs.
- Multiple radios / WMN Node.
- Several channels are available.
- Creation is complex.

Channel Assignment (CA) Scheme

- CA can be understood as, $C_i = CA(i, R_i)$, where
 - Each node i, has random number of identical radios R_i .
 - $C_i \Rightarrow$ List of channels assigned to R_i .

• Assumption : Number of available channels $> (R_i)_{max}$

Radio Co-location Scenarios

- Common Channel Scenarios
 - Fig. (i) \rightarrow No RCI
 - Single Radio Common Channel at *B* (SRCC).
 - Fig. (ii) \rightarrow RCI
 - Multiple Radios Common Channel at *B* (MRCC).
- Different Channel Scenarios
 - Fig. (iii) \rightarrow No RCI
 - Multiple Radios Different Channels at *B* (MRDC).

(日) (同) (三) (三)

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA 00000	Conclusions
Radio Co	o-location Inte	rference	(RCI) II		

Impact & Alleviation

- Spatially co-located radios cause RCI.
- Impact of RCI degrades network performance.
- Should be represented in MMCG.
- The Enhanced MMCG (E-MMCG) algorithm represents RCI while the Classical MMCG (C-MMCG) algorithm fails to do so [7].

Sample WMN Configuration

- G reflects a node centric view of the WMN
- Vertices represent WMN nodes. ۰
- Edges denote wireless links. ٠
- All radios are operating on an identical ٠ channel (Channel₁).

• RCI conflict links \rightarrow Red dotted lines in Figure 2.

Radio Co	-location A	ware Channel		nmente	
Introduction 000	Impact of RCI on WMN	ls RCA CAs F	RCA OIS CA	RCA EIZM CA 00000	Conclusions

Features

Features of Radio Co-location Aware Channel Assignments (RCA CAs)

- RCI Mitigation through Radio Co-location Optimization (RCO) function.
- Equitable distribution of channels among radios in a WMN.
- Topology preserving.

The Proposed RCA CAs

Two RCA CAs are proposed

- RCA Optimized Independent Set (OIS) CA .
- RCA Elevated Interference Zone Mitigation (EIZM) CA.

RCA On	timized Indene	ndent Se	t C		
Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA 00000	Conclusions

The Driving Ideas

- Notion of Statistical Evenness in Channel Allocation
 - CA performance has a Statistical Dimension.
 - Even distribution of channels across radios \rightarrow Improved CA performance.
- Emphasis on RCI Mitigation

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
C	1 E 1		A 11 . 1		
Statistic	al Evenness in	Channel	Allocation		
Application	9. Validation				

Idea Implementation

Concept of even distribution of channels across links is used in designing RCA $\ensuremath{\mathsf{OIS-CA}}$

Idea Validation

Validation approach

- Propose OIS-CA and implement it.
- Compare OIS-CA with MaIS-CA (An Independent Set based CA).
 - Theoretically \rightarrow Statistical Evenness.
 - Experimentally \rightarrow ns-3 Simulations.

Radio Co-location Aware Channel Assignments

IIT Hvderabad

11/28

Radio Co-location Aware Channel Assignments

 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

 OIS vs MalS : Independent Set Selection
 Selection</t

Input Conflict Graph

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO Conclusions OOIS vs MaIS : Independent Set Selection Independent Set 1

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO Conclusions OOIS vs MaIS : Independent Set Selection Independent Set 2

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OCOCO Conclusions OOIS vs MaIS : Independent Set Selection Independent Set 3

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OOOOO Conclusions OIS vs MalS : Independent Set Selection

Measuring Statistical Evenness

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
OIS vs I	MaIS : Indepen	dent Set	Selection		

Is Channel Distribution Equitable ?

Ratio of Channel Distribution across Radios	
---	--

Grid	Num of	$R_{C1}:R_{C2}:R_{C3}$				
Size	Radios	MalS	OIS			
5×5	50	1.00 : 1.63 : 1.94	1.00 : 1.06 : 1.06			
6×6	72	1.00 : 1.33 : 1.66	1.00 : 1.09 : 1.33			
7×7	98	1.00 : 1.56 : 1.69	1.00 : 1.00 : 1.16			
8×8	128	1.00 : 1.48 : 1.64	1.00 : 1.00 : 1.28			
9×9	162	1.00 : 1.58 : 1.57	1.08 : 1.00 : 1.29			

- 2 radios/node, 3 orthogonal channels $C_1, C_2 \& C_3$
- Statistical Evenness of a $CA \rightarrow R_{C1}$: R_{C2} : R_{C3} .
 - $R_{Ch} \rightarrow$ Number of radios operating on channel Ch
 - Ratio normalized by smallest value.
- MalS \rightarrow Skewed distribution of channels.

 ${\rm Statistical \ Evenness} \rightarrow OIS > MalS$

 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

 OIS vs MaIS : A Theoretical Illustration
 Sample WMN
 Conclusions
 Conclusions
 Conclusions

INITIAL WMN GRAPH

- 4 NODES
- 2 RADIOS / NODE
- 3 CHANNELS AVAILABLE
- INITIALLY ALL NODES ON CHANNEL1

 Introduction
 Impact of RCI on WMNs
 RCA CAs
 RCA OIS CA
 RCA EIZM CA
 Conclusions

 OOIS
 vs
 MaIS : A Theoretical Illustration
 OIS Step 1
 OIS Step 1
 OIS Step 1

Radio Co-location Aware Channel Assignments

IIT Hyderabad

14/28

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ●○	RCA EIZM CA 00000	Conclusions
Simulation WMN Topolo	on Setup ogies & CA Schemes				

WMN Topologies

- 5×5 grid WMN (GWMN).
- Random WMN (RWMN) of 50 nodes spread across an area of $1500m \times 1500m$.

CA Schemes Considered

- BFS-CA \rightarrow A Breadth First Search based CA.
- MalS-CA \rightarrow A Maximum Independent Set based CA.
- OIS-CA \rightarrow RCA Optimized Independent Set based CA.
- OIS-N-CA \rightarrow Non-RCA version of OIS.

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ●○	RCA EIZM CA	Conclusions
Simulation Data Traffic	on Setup ^{Characteristics}				

Flow Types

- Grid WMN.
 - 4-Hop Flows & 8-Hop Flows.
- Random WMN.
 - 3-Hop Flows to 10-Hop Flows.

Transport Layer Protocols

- TCP \rightarrow ns-3 BulkSendApplication.
- UDP \rightarrow ns-3 UdpClientServer.

Network Metrics Observed

- Network Aggregate Throughput (Throughput).
- Packet Loss Ratio (PLR).
- Mean Delay (MD).

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
Simulat Test Scenar	ion Setup				

Grid WMN Test Cases

- 1 D2 \rightarrow Two concurrent 8-Hop flows.
- **2** H5 \rightarrow Five concurrent 4-Hop flows (Rows).
- IH4V4 → Eight concurrent 4-Hop flows (Combinations).
- ③ H5V5 → Ten concurrent 4-Hop flows (H5 & V5).
- H5V5D2 \rightarrow Twelve concurrent flows. (D2, H5 & V5).

Grid WMN Layout

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
			•0		
Simulati Test Scenari	on Setup				

Random WMN Test Cases

Test Cases \rightarrow Concurrent multi-hop flows of 3 to 10 hop counts.

- TC4 \rightarrow 4 concurrent multi-hop flows.
- **2** TC8 \rightarrow 8 concurrent multi-hop flows.
- TC12 \rightarrow 12 concurrent multi-hop flows.
- TC16 \rightarrow 16 concurrent multi-hop flows.
- **⑤** TC20 \rightarrow 20 concurrent multi-hop flows.

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
			•0		
Simulation P	on Setup				

ns-3 Simulation Parameters

Parameter	Value
Radios/Node	GWMN: 2, RWMN: 3
Range Of Radios	250 mts
IEEE Standard	GWMN: 802.11g RWMN: 802.11n
Available Orthogonal Channels	GWMN: 3 (2.4 GHz) RWMN: 4 (5 GHz)
Transmitted File Size	GWMN: 10 MB RWMN: 1 MB
Maximum 802.11g/n Phy Datarate	54 Mbps
Maximum Segment Size (TCP)	1 KB
Packet Size (UDP)	GWMN: 1 KB RWMN: 512 Bytes
MAC Fragmentation Threshold	2200 Bytes
RTS/CTS	Enabled
Packet Interval (UDP)	50ms
Routing Protocol Used	OLSR
Loss Model	Range Propagation
Rate Control	Constant Rate

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
			00		
OIS Perf	ormance Eval	uation			

イロン イロン イヨン イヨン

æ

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
			00		
OIS Perf	formance Evalu	ation			
RWMN Thro	bughput				

<ロ> <同> <同> < 回> < 回>

æ

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
000			00	00000	
OIS Per	formance Evalu	ation			
PLR in GWN	٨N				

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○●	RCA EIZM CA 00000	Conclusions
OIS Per	formance Evalu	ation			

< ロ > < 回 > < 回 > < 回 > < 回 > .

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions
000			00	00000	
OIS Per	formance Evalu	ation			
MD in GWN	1N				

・ロン ・回と ・ヨン ・ ヨン

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA ○●	RCA EIZM CA 00000	Conclusions
OIS Peri	formance Evalı	ation			

・ロン ・回と ・ヨン ・ ヨン

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA RCA EIZM CA Conclusions oco RCA Elevated Interference Zone Mitigation CA Motivation

Factors Contributing To Idea Development

- Impact of interference varies within a wireless network.
- SINR levels at different locations differ.

The Driving Idea

 $\bullet~$ Localized pockets of high interference \rightarrow Performance bottlenecks.

- Named \rightarrow Elevated Interference Zones (EIZ)
- Interference alleviation at EIZ \rightarrow Enhanced performance.
- Emphasis on RCI mitigation

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA	Conclusions
Features	of EIZM CA				
Spatio-statist	cical Design				

Spatial Features

Focuses on localized Elevated Interference Zones.

- Identifies EIZ in a WMN through its Conflict Graph.
- Assigns channels to EIZ based on severity of interference.
- Correlates TID with SINR.

Statistical Evenness

Aimed at equitable distribution of channels across radios.

- Most CA schemes start with a default channel assignment.
- $\bullet\,$ Causes overuse of default channel $\rightarrow\,$ Skewed distribution.
 - eg. MaIS-CA, BFS-CA, CEN-CA, CLQ-CA etc.
- EIZM-CA divides MMCG nodes into level Sets (BFS traversal).
 - Adjacent Level Set nodes \rightarrow Orthogonal channels.
 - Improved distribution of channels.

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ection Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele Step 4	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele Step 6	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA o●ooo	Conclusions
EIZ Sele	ction Sequence				

Introduction 000	Impact of RCI on WM	Ns R(CA CAs	RCA OIS CA 00	RCA EIZM CA 00●00	Conclusions
EIZM : A Sample WMI	A Theoretic	al Illus	stratior	1		
INITIAL WMN GR - 4 NODES - 2 RADIOS / NOE - 3 CHANNELS A' - NO INITIAL CHA	APH DE VAILABLE ANNEL ASSIGNMENT TO	RADIOS				
			·	EIZM	ZM-CA	
			WMN BFS			

Radio Co-location Aware Channel Assignments

ICACCI 2015

Introduction Impact of RCI on WMNs RCA CAs RCA OIS CA OC RCA EIZM CA Conclusions COO EIZM : A Theoretical Illustration EIZM Step 1

Radio Co-location Aware Channel Assignments

Image: A math a math

- ∢ ≣ →

æ

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA ooo●o	Conclusions
EIZM P	Performance Eva	luation			
RWMN Th	roughput				

<ロ> <同> <同> < 回> < 回>

æ

- RTS/CTS is enabled for the one-way UDP flows.
- Hence magnitude of PLR values is less prominent.

- RTS/CTS is enabled for the one-way UDP flows.
- Hence magnitude of PLR values is less prominent.

(日) (同) (日) (日)

æ

(日) (同) (三) (三)

æ

		f Danult	-		
Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA 0000●	Conclusions

Maximum Increase in Throughput

- EIZM-CA over MaIS-CA $\rightarrow 72\%$
- EIZM-CA over BFS-CA $\rightarrow 149\%$
- OIS-CA over MalS-CA $\rightarrow 43\%$
- OIS-CA over BFS-CA $\rightarrow 81\%$

Maximum Decrease in MD

- EIZM-CA over MaIS-CA $\rightarrow 68\%$
- EIZM-CA over BFS-CA $\rightarrow 28\%$
- OIS-CA over MalS-CA $\rightarrow 41\%$
- OIS-CA over BFS-CA $\rightarrow 19\%$

Maximum Decrease in PLR

- EIZM-CA over MalS-CA $\rightarrow 11\%$
- EIZM-CA over BFS-CA $\rightarrow 81\%$
- OIS-CA over MalS-CA $\rightarrow 41\%$
- OIS-CA over BFS-CA $\rightarrow 88\%$

EIZM-CA vs OIS-CA

- Throughput \rightarrow EIZM-CA > OIS-CA
- PLR \rightarrow EIZM-CA \approx OIS-CA
- MD \rightarrow EIZM-CA \approx OIS-CA

Conclusi	ons				
Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA 00000	Conclusions

Radio Co-location Aware Channel Assignments

- EIZM-CA & OIS-CA significantly outperform reference CAs.
 - Radio Co-location Optimization.
 - Equitable distribution of channels across radios.
- EIZM-CA performs better than OIS-CA.
 - Spatio-statistical CA design > Purely statistical CA design.

Reference	es l				
Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA 00000	Conclusions

- A. Capone, G. Carello, I. Filippini, S. Gualandi, F. Malucelli, "Routing, scheduling and channel assignment in Wireless Mesh Networks: A Optimization models and algorithms", 2009.
- Yu Xutao, Xu Jin, "A Channel Assignment Method for Multi-channel Static Wireless Networks", , IEEE, 2011.
- Krishna N. Ramachandran, Elizabeth M. Belding, Kevin C. Almeroth, Milind M. Buddhikot, "Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks", ,INFOCOM, 2006.
 - Aizaz U. Chaudhry, John W. Chinneck, and Roshdy H.M. Hafez, "Channel Requirements for Interference-free Wireless Mesh Networks to Achieve Maximum Throughput", ,ICCCN, 2013.
- Cheng, Hongju, et al. "Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks." Ad Hoc Networks 10.5 (2012): 760-773. 2012
 - Ding, Yong, and Li Xiao. "Channel allocation in multi-channel wireless mesh networks." Computer Communications 34.7 (2011): 803-815. 2011

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction 000	Impact of RCI on WMNs	RCA CAs	RCA OIS CA oo	RCA EIZM CA 00000	Conclusions
Referenc	es II				

Kala, Srikant Manas, et al. "Interference mitigation in wireless mesh networks through radio co-location aware conflict graphs." Springer Wireless Networks, http://dx.doi.org/10.1007/s11276-015-1002-4. 2015

< ∃ >

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

THANK YOU

Radio Co-location Aware Channel Assignments IIT Hyderabad ICACCI 2015 27/28

-ৰ ≣ ▶

Introduction	Impact of RCI on WMNs	RCA CAs	RCA OIS CA	RCA EIZM CA	Conclusions

QUERIES ?

▶ * 문 ▶ * 문 ▶

æ