

Mukesh Kumar Giluka, Sharath Kumar N, Nitish Rajoria and Bheemarjuna Reddy Tamma

- Networked Wireless Systems Laboratory
- Dept. of Computer Science and Engineering
- Indian Institute of Technology (IIT) Hyderabad, India

Introduction to IoT

- Internet connects all people, so it is called "the Internet of People"
- IoT connects all things, so it is called "the Internet of Things"

NCC 2014

Introduction to M2M

M2M Communication

- M2M covers the networking part of IoT
- M2M Device (Sensors, Meters)
- Communication Network (Cellular Network, Wi-Fi etc)
- Application (Software Program)
- Types of M2M Communications
 - Capillary M2M
 - Cellular M2M

Source: Min Chen, Jiafu Wan and Fang Li, "Machine-to-Machine Communications: Architectures, Standards and Applications", *KSII Transactions on Internet and Information Systems*, vol. 6, no. 2, February 2012.

Characteristics of M2M Traffic

- Low traffic volume
- Higher uplink to downlink ratio
- Low mobility
- Frequency of data sending is high

Resource Block

- One resource block is 0.5ms and contains 12 subcarriers from each OFDM symbol
- One frame is 10ms
 → 10 subframes
- One subframe is 1ms $\rightarrow 2$ slots

Source: Erik Dahlman, Stefan Parkvall, and Johan Sköld,"4G LTE/LTE advanced for mobile broadband"

Scheduling Issues in Supporting M2M in LTE

- Bandwidth is limited
- Large number of M2M devices involved
- Inefficiency of present resource schedulers to support M2M flows
 - ✓ Designed for H2H/H2M/M2H
 - Difference in traffic nature
- Wastage of resources during contiguous allocation in uplink

Designing of scheduling algorithm, based on the traffic characteristics of H2H and M2M flows, which allocates the resources to M2M flows without affecting or least affecting M2M flows.

Type/Class	C1	C2	C3	C4	C5	C6	C7	C8
Real Time	1	1	1	1	0	0	0	0
Reliability	1	1	0	0	1	1	0	0
Priority	1	0	1	0	1	0	1	0

Applications Example: Real Time : Reliability : Priority :

- Assign priorities to each request based on the belonging class
- Minimum amount of RBs to be allocated to a request is MGBR*TTI
- Constraint on number of RBs to be allocated to M2M requests:

$$\sum_{i=1}^{N} RB_{mi} \le Lm$$

where ${}^{L}m$ is maximum number of RBs to be assigned to M2M requests

Class Based Priority Scheduling

Properties:

- Each class contains h2h
 m2m traffic.
- Classes can goes to 'n'.

Simulation Parameters

Parameter	Values		
System Bandwidth	20 MHz		
Subcarrier per RB	12		
RB Bandwidth	180 kHz		
# of active users in cell	9, 12, 18, 24, 30, 36, 42, 48, 90		
# of RBs	100		
TTI Duration	1ms		
Simulation time	1 sec		
Simulator	NS3		

$\underline{\text{Calculation of } \underline{\lambda}}$

- Upto λ=0.5, H2H throughput is unaffected
- After λ=0.7, both start converging
- λ should be chosen between
 0.4 and 0.5

System Throughput Of RR & CBP Schedulers¹

- Total number of devices: 9, 12,18,24,30,36,42,48
- Number of H2H devices: N/3
- Number of M2M devices: 2N/3

UDP Traffic

NCC 2014

System Throughput Of RR & CBP Schedules²

TCP Traffic Parameters:

PktIntervalTime :

TCP+UDP Traffic Parameters:

Utility Matrix :

NCC 2014

Distribution of Classes

Priority Class	Scenario 1 (% of UEs)	Scenario 2 (% of UEs)
Class 1	20	40
Class 2	20	30
Class 3	20	10
Class 4	20	10
Class 5	20	10

Classwise Utility Comparison

Scenario-2:

*

Scenario-1:

Utility Matrix :

IIT Hyderabad

Classwise Throughput Comparison

IIT Hyderabad

Conclusion and Future Work

- Efficient Radio resource allocation schemes for M2M flows are needed
- λ can be taken in between 0.4 and 0.5
- Proposed CBP algorithm compared with RR
 - ✓ For TCP, UDP and mixed traffic
 - ✓ Average per class throughput
 - ✓ Average per class utility
- As future work
 - Simulate for large number of devices with more specific M2M applications
 - Compare with Proportional fair algorithm
 - Reduction in signaling overhead

- Kan Zheng, Fanglong Hu, Wenbo Wang, Wei Xiang and Mischa Dohler, "Radio Resource Allocation in LTE-Advanced Cellular Networks with M2M Communications", *IEEE Communications Magazine*, vol. 50, no. 7, pp. 184-192, July 2012.
- Shao-Yu Lien, Kwang-Cheng Chen and Yonghua Lin, "Toward Ubiquitous Massive Accesses in 3GPP Machine-to-Machine Communications", *IEEE Communications Magazine*, vol. 49, no. 4, pp. 66-74, April 2011.
- 3GPP TS 36.211 V8.7.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)", June 2009.
- Jeongchan Kim, Donggeun Kim, Youngnam Han, "Proportional Fair Scheduling Algorithm for SC-FDMA in LTE Uplink", *in Proc. of IEEE Global Communications Conference (GLOBECOM)*, December 2012.

Thank-YoU

•?? && " " •cs11p1002@iith.ac.in